Search results
Results from the WOW.Com Content Network
Plate tectonics (from Latin tectonicus, from Ancient Greek τεκτονικός (tektonikós) 'pertaining to building') [1] is the scientific theory that Earth's lithosphere comprises a number of large tectonic plates, which have been slowly moving since 3–4 billion years ago.
Plate tectonics (from Latin tectonicus, from Ancient Greek τεκτονικός (tektonikós) 'pertaining to building') is the scientific theory that Earth's lithosphere comprises a number of large tectonic plates, which have been slowly moving since 3–4 billion years ago.
The Wilson cycle theory is based upon the idea of an ongoing cycle of ocean closure, continental collision, and a formation of new ocean on the former suture zone.The Wilson Cycle can be described in six phases of tectonic plate motion: the separation of a continent (continental rift), formation of a young ocean at the seafloor, formation of ocean basins during continental drift, initiation of ...
For purposes of this list, a major plate is any plate with an area greater than 20 million km 2 (7.7 million sq mi) African plate – Tectonic plate underlying Africa – 61,300,000 km 2 (23,700,000 sq mi) Antarctic plate – Major tectonic plate containing Antarctica and the surrounding ocean floor – 60,900,000 km 2 (23,500,000 sq mi)
Back-arc basins can form from extension in the overriding plate, in response to the displacement of the subducting slab at some oceanic trenches. This paradoxically results in divergence which was only incorporated in the theory of plate tectonics in 1970, but still results in net destruction when summed over major plate boundaries. [2]
Continental-continental divergent/constructive boundary Oceanic divergent boundary: mid-ocean ridge (cross-section/cut-away view). In plate tectonics, a divergent boundary or divergent plate boundary (also known as a constructive boundary or an extensional boundary) is a linear feature that exists between two tectonic plates that are moving away from each other.
A schematic evolutionary diagram showing the impact of a mantle plume on the early lithosphere (dark blue) and surface proto-crust (brown). This initiated subduction and subsequent global plate tectonics within a previously unseparated lithosphere that had no lateral surface movement.Modified from [17]
The figure is a schematic diagram depicting a subduction zone. The subduction slab on the right enters the mantle with a varying temperature gradient while importing water in a downward motion. A model of the subducting Farallon slab under North America. In geology, the slab is a significant constituent of subduction zones. [1]