enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bond energy - Wikipedia

    en.wikipedia.org/wiki/Bond_energy

    The bond dissociation energy (enthalpy) [4] is also referred to as bond disruption energy, bond energy, bond strength, or binding energy (abbreviation: BDE, BE, or D). It is defined as the standard enthalpy change of the following fission: R—X → R + X. The BDE, denoted by Dº(R—X), is usually derived by the thermochemical equation,

  3. Standard enthalpy of reaction - Wikipedia

    en.wikipedia.org/wiki/Standard_enthalpy_of_reaction

    If the enthalpies for each step can be measured, then their sum gives the enthalpy of the overall single reaction. [11] Finally the reaction enthalpy may be estimated using bond energies for the bonds which are broken and formed in the reaction of interest. This method is only approximate, however, because a reported bond energy is only an ...

  4. Van 't Hoff equation - Wikipedia

    en.wikipedia.org/wiki/Van_'t_Hoff_equation

    The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".

  5. Bond-dissociation energy - Wikipedia

    en.wikipedia.org/wiki/Bond-dissociation_energy

    The term bond-dissociation energy is similar to the related notion of bond-dissociation enthalpy (or bond enthalpy), which is sometimes used interchangeably.However, some authors make the distinction that the bond-dissociation energy (D 0) refers to the enthalpy change at 0 K, while the term bond-dissociation enthalpy is used for the enthalpy change at 298 K (unambiguously denoted DH° 298).

  6. Transition state theory - Wikipedia

    en.wikipedia.org/wiki/Transition_state_theory

    At 298 K, a reaction with ΔG ‡ = 23 kcal/mol has a rate constant of k ≈ 8.4 × 10 −5 s −1 and a half life of t 1/2 ≈ 2.3 hours, figures that are often rounded to k ~ 10 −4 s −1 and t 1/2 ~ 2 h. Thus, a free energy of activation of this magnitude corresponds to a typical reaction that proceeds to completion overnight at room ...

  7. Thermochemical equation - Wikipedia

    en.wikipedia.org/wiki/Thermochemical_equation

    In thermochemistry, a thermochemical equation is a balanced chemical equation that represents the energy changes from a system to its surroundings. One such equation involves the enthalpy change, which is denoted with Δ H {\displaystyle \Delta H} In variable form, a thermochemical equation would appear similar to the following:

  8. Born–Haber cycle - Wikipedia

    en.wikipedia.org/wiki/Born–Haber_cycle

    Born–Haber cycles are used primarily as a means of calculating lattice energy (or more precisely enthalpy [note 1]), which cannot otherwise be measured directly. The lattice enthalpy is the enthalpy change involved in the formation of an ionic compound from gaseous ions (an exothermic process ), or sometimes defined as the energy to break the ...

  9. Bond cleavage - Wikipedia

    en.wikipedia.org/wiki/Bond_cleavage

    The bond-dissociation energy of a bond is the amount of energy required to cleave the bond homolytically. This enthalpy change is one measure of bond strength. The triplet excitation energy of a sigma bond is the energy required for homolytic dissociation, but the actual excitation energy may be higher than the bond-dissociation energy due to ...