enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Torsion of a curve - Wikipedia

    en.wikipedia.org/wiki/Torsion_of_a_curve

    Geometric relevance: The torsion τ(s) measures the turnaround of the binormal vector. The larger the torsion is, the faster the binormal vector rotates around the axis given by the tangent vector (see graphical illustrations). In the animated figure the rotation of the binormal vector is clearly visible at the peaks of the torsion function.

  3. Torque - Wikipedia

    en.wikipedia.org/wiki/Torque

    It follows that the torque vector is perpendicular to both the position and force vectors and defines the plane in which the two vectors lie. The resulting torque vector direction is determined by the right-hand rule. Therefore any force directed parallel to the particle's position vector does not produce a torque.

  4. Frenet–Serret formulas - Wikipedia

    en.wikipedia.org/wiki/Frenet–Serret_formulas

    A space curve; the vectors T, N, B; and the osculating plane spanned by T and N. In differential geometry, the Frenet–Serret formulas describe the kinematic properties of a particle moving along a differentiable curve in three-dimensional Euclidean space, or the geometric properties of the curve itself irrespective of any motion.

  5. Torsion tensor - Wikipedia

    en.wikipedia.org/wiki/Torsion_tensor

    Thus the torsion tensor is a tensor: a (bilinear) function of two input vectors v and w that produces an output vector (,). It is skew symmetric in the arguments v and w , a reflection of the fact that traversing the circuit in the opposite sense undoes the original displacement, in much the same way that twisting a screw in opposite directions ...

  6. Torsion (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Torsion_(mechanics)

    Torsion of a square section bar Example of torsion mechanics. In the field of solid mechanics, torsion is the twisting of an object due to an applied torque [1] [2].Torsion could be defined as strain [3] [4] or angular deformation [5], and is measured by the angle a chosen section is rotated from its equilibrium position [6].

  7. Screw theory - Wikipedia

    en.wikipedia.org/wiki/Screw_theory

    The force and torque vectors that arise in applying Newton's laws to a rigid body can be assembled into a screw called a wrench. A force has a point of application and a line of action, therefore it defines the Plücker coordinates of a line in space and has zero pitch. A torque, on the other hand, is a pure moment that is not bound to a line ...

  8. Hooke's law - Wikipedia

    en.wikipedia.org/wiki/Hooke's_law

    In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.

  9. Parallelogram of force - Wikipedia

    en.wikipedia.org/wiki/Parallelogram_of_force

    The parallelogram of forces is a method for solving (or visualizing) the results of applying two forces to an object. When more than two forces are involved, the geometry is no longer a parallelogram, but the same principles apply to a polygon of forces. The resultant force due to the application of a number of forces can be found geometrically ...