Search results
Results from the WOW.Com Content Network
The bucket elimination algorithm can be adapted for constraint optimization. A given variable can be indeed removed from the problem by replacing all soft constraints containing it with a new soft constraint. The cost of this new constraint is computed assuming a maximal value for every value of the removed variable.
For example, in economics the optimal profit to a player is calculated subject to a constrained space of actions, where a Lagrange multiplier is the change in the optimal value of the objective function (profit) due to the relaxation of a given constraint (e.g. through a change in income); in such a context is the marginal cost of the ...
For the constrained case, the situation is more complicated, and one can state a variety of (increasingly complicated) "regularity" conditions under which a constrained minimizer also satisfies the KKT conditions. Some common examples for conditions that guarantee this are tabulated in the following, with the LICQ the most frequently used one:
Mathematical programming with equilibrium constraints (MPEC) is the study of constrained optimization problems where the constraints include variational inequalities or complementarities. MPEC is related to the Stackelberg game. MPEC is used in the study of engineering design, economic equilibrium, and multilevel games.
A general chance constrained optimization problem can be formulated as follows: (,,) (,,) =, {(,,)}Here, is the objective function, represents the equality constraints, represents the inequality constraints, represents the state variables, represents the control variables, represents the uncertain parameters, and is the confidence level.
If the objective function is quadratic and the constraints are linear, quadratic programming techniques are used. If the objective function is a ratio of a concave and a convex function (in the maximization case) and the constraints are convex, then the problem can be transformed to a convex optimization problem using fractional programming ...
Optimal Control Theory and Static Optimization in Economics. New York: Cambridge University Press. pp. 127– 168. ISBN 0-521-33158-7. Takayama, Akira (1985). "Developments of Optimal Control Theory and Its Applications". Mathematical Economics (2nd ed.). New York: Cambridge University Press. pp. 600– 719. ISBN 0-521-31498-4.
Under certain conditions, as for example in convex optimization, if a constraint is non-binding, the optimization problem would have the same solution even in the absence of that constraint. If a constraint is not satisfied at a given point, the point is said to be infeasible .