Search results
Results from the WOW.Com Content Network
The bucket elimination algorithm can be adapted for constraint optimization. A given variable can be indeed removed from the problem by replacing all soft constraints containing it with a new soft constraint. The cost of this new constraint is computed assuming a maximal value for every value of the removed variable.
For example, in economics the optimal profit to a player is calculated subject to a constrained space of actions, where a Lagrange multiplier is the change in the optimal value of the objective function (profit) due to the relaxation of a given constraint (e.g. through a change in income); in such a context is the marginal cost of the ...
In constrained optimization in economics, the shadow price is the change, per infinitesimal unit of the constraint, in the optimal value of the objective function of an optimization problem obtained by relaxing the constraint. If the objective function is utility, it is the marginal utility of relaxing the constraint.
A general chance constrained optimization problem can be formulated as follows: (,,) (,,) =, {(,,)}Here, is the objective function, represents the equality constraints, represents the inequality constraints, represents the state variables, represents the control variables, represents the uncertain parameters, and is the confidence level.
The optimization of portfolios is an example of multi-objective optimization in economics. Since the 1970s, economists have modeled dynamic decisions over time using control theory. [14] For example, dynamic search models are used to study labor-market behavior. [15] A crucial distinction is between deterministic and stochastic models. [16]
Consider the following nonlinear optimization problem in standard form: . minimize () subject to (),() =where is the optimization variable chosen from a convex subset of , is the objective or utility function, (=, …,) are the inequality constraint functions and (=, …,) are the equality constraint functions.
Optimization problems can be divided into two categories, depending on whether the variables are continuous or discrete: An optimization problem with discrete variables is known as a discrete optimization , in which an object such as an integer , permutation or graph must be found from a countable set .
The Hamiltonian is a function used to solve a problem of optimal control for a dynamical system.It can be understood as an instantaneous increment of the Lagrangian expression of the problem that is to be optimized over a certain time period. [1]