Ad
related to: useful life of electrical equipmenttemu.com has been visited by 1M+ users in the past month
- Clearance Sale
Enjoy Wholesale Prices
Find Everything You Need
- Jaw-dropping prices
Countless Choices For Low Prices
Up To 90% Off For Everything
- Store Locator
Team up, price down
Highly rated, low price
- Top Sale Items
Daily must-haves
Special for you
- Clearance Sale
Search results
Results from the WOW.Com Content Network
Academic enquiry into the product lifetimes of electrical and electronic equipment was undertaken in 2000 by Cooper and Mayers [21] who conducted household interviews and focus groups to establish the age at discard (actual product lifetime) and expected lifetimes for 17 products. Since this study, work has been undertaken by other academics ...
The difference between service life and predicted life is most clear when considering mission time and reliability in comparison to MTBF and service life. For example, a missile system can have a mission time of less than one minute, service life of 20 years, active MTBF of 20 minutes, dormant MTBF of 50 years, and reliability of 99.9999%.
This is useful to estimate the failure rate of a system when individual components or subsystems have already been tested. [ 18 ] [ 19 ] Adding "redundant" components to eliminate a single point of failure may thus actually increase the failure rate, however reduces the "mission failure" rate, or the "mean time between critical failures" (MTBCF).
It is also commonly known as waste electrical and electronic equipment (WEEE) or end-of-life (EOL) electronics. [1] Used electronics which are destined for refurbishment, reuse, resale, salvage recycling through material recovery, or disposal are also considered e-waste.
Mean time to first failure – Average service life for non-repairable components; Mean time to repair – Measure of the maintainability of repairable items; Power-on hours – The length of time that electrical power is applied to a device; Reliability engineering – Sub-discipline of systems engineering that emphasizes dependability
Electrical machines are usually designed with an average temperature below the rated hot-spot temperature to allow for acceptable life. Insulation does not suddenly fail if the hot-spot temperature is reached, but useful operating life declines rapidly; a rule of thumb is a halving of life for every 10 °C temperature increase.
Reliability engineering is a sub-discipline of systems engineering that emphasizes the ability of equipment to function without failure. Reliability is defined as the probability that a product, system, or service will perform its intended function adequately for a specified period of time, OR will operate in a defined environment without failure. [1]
In economics and industrial design, planned obsolescence (also called built-in obsolescence or premature obsolescence) is the concept of policies planning or designing a product with an artificially limited useful life or a purposely frail design, so that it becomes obsolete after a certain predetermined period of time upon which it ...
Ad
related to: useful life of electrical equipmenttemu.com has been visited by 1M+ users in the past month