enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Naive Bayes classifier - Wikipedia

    en.wikipedia.org/wiki/Naive_Bayes_classifier

    Example of a naive Bayes classifier depicted as a Bayesian Network. In statistics, naive Bayes classifiers are a family of linear "probabilistic classifiers" which assumes that the features are conditionally independent, given the target class. The strength (naivety) of this assumption is what gives the classifier its name.

  3. Bayes classifier - Wikipedia

    en.wikipedia.org/wiki/Bayes_classifier

    In statistical classification, the Bayes classifier is the classifier having the smallest probability of misclassification of all classifiers using the same set of features. [ 1 ] Definition

  4. Discriminative model - Wikipedia

    en.wikipedia.org/wiki/Discriminative_model

    Generative model approaches which uses a joint probability distribution instead, include naive Bayes classifiers, Gaussian mixture models, variational autoencoders, generative adversarial networks and others.

  5. Bayesian programming - Wikipedia

    en.wikipedia.org/wiki/Bayesian_programming

    The transition model () and the observation model () are both specified using Gaussian laws with means that are linear functions of the conditioning variables. With these hypotheses and by using the recursive formula, it is possible to solve the inference problem analytically to answer the usual P ( S T ∣ O 0 ∧ ⋯ ∧ O T ∧ π ...

  6. Bayes error rate - Wikipedia

    en.wikipedia.org/wiki/Bayes_error_rate

    Download QR code; Print/export ... This solution is known as the Bayes classifier. ... Naive Bayes classifier; References

  7. Probabilistic classification - Wikipedia

    en.wikipedia.org/wiki/Probabilistic_classification

    Binary probabilistic classifiers are also called binary regression models in statistics. In econometrics, probabilistic classification in general is called discrete choice. Some classification models, such as naive Bayes, logistic regression and multilayer perceptrons (when trained under an appropriate loss function) are

  8. Relevance vector machine - Wikipedia

    en.wikipedia.org/wiki/Relevance_vector_machine

    where is the kernel function (usually Gaussian), are the variances of the prior on the weight vector (,), and , …, are the input vectors of the training set. [ 4 ] Compared to that of support vector machines (SVM), the Bayesian formulation of the RVM avoids the set of free parameters of the SVM (that usually require cross-validation-based ...

  9. Additive smoothing - Wikipedia

    en.wikipedia.org/wiki/Additive_smoothing

    Download QR code; Print/export ... smoothing is commonly a component of naive Bayes classifiers. ... the use of Additive smoothing in a Naïve Bayes classifier