Search results
Results from the WOW.Com Content Network
This structure with repeated sequences is responsible for frequent duplication events, which create new genes, and recombination events, at the origin of combination diversity. These properties generate diversity at an individual scale and therefore contribute to adaptation of organisms to their environments.
DNA structure and bases A-B-Z-DNA Side View. Tertiary structure refers to the locations of the atoms in three-dimensional space, taking into consideration geometrical and steric constraints. It is a higher order than the secondary structure, in which large-scale folding in a linear polymer occurs and the entire chain is folded into a specific 3 ...
The details of how sequences of DNA instruct cells to make specific proteins was worked out by molecular biologists during the period from 1953 to 1965. Francis Crick played an integral role in both the theory and analysis of the experiments that led to an improved understanding of the genetic code. [6]
DNA sequencing is the process of determining the nucleotide sequence of a given DNA fragment. The sequence of the DNA of a living thing encodes the necessary information for that living thing to survive and reproduce. Therefore, determining the sequence is useful in fundamental research into why and how organisms live, as well as in applied ...
The split gene theory is a theory of the origin of introns, long non-coding sequences in eukaryotic genes between the exons. [1] [2] [3] The theory holds that the randomness of primordial DNA sequences would only permit small (< 600bp) open reading frames (ORFs), and that important intron structures and regulatory sequences are derived from stop codons.
Therefore in this book I will consider genes as DNA sequences encoding information for functional products, be it proteins or RNA molecules. With 'encoding information', I mean that the DNA sequence is used as a template for the production of an RNA molecule or a protein that performs some function. [5]
During DNA replication, DNA polymerase cannot replicate the sequences present at the 3' ends of the parent strands. This is a consequence of its unidirectional mode of DNA synthesis: it can only attach new nucleotides to an existing 3'-end (that is, synthesis progresses 5'-3') and thus it requires a primer to initiate replication.
The equalities G = C and A = T suggested that these bases were paired, this pairing being the basis of the DNA structure that is now known to be correct. Conversely the inequalities G ≠ A etc. meant that DNA could not have a systematic repetition of a fundamental unit, as required by the tetranucleotide hypothesis.