Search results
Results from the WOW.Com Content Network
As a relation between some temporal events and some spatial events, hyperbolic orthogonality (as found in split-complex numbers) is a heterogeneous relation. [21] A geometric configuration can be considered a relation between its points and its lines. The relation is expressed as incidence. Finite and infinite projective and affine planes are ...
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
When it is desired to associate a numeric value with the result of a comparison between two data items, say a and b, the usual convention is to assign −1 if a < b, 0 if a = b and 1 if a > b. For example, the C function strcmp performs a three-way comparison and returns −1, 0, or 1 according to this convention, and qsort expects the ...
If X and Y are finite sets, then there exists a bijection between the two sets X and Y if and only if X and Y have the same number of elements. Indeed, in axiomatic set theory , this is taken as the definition of "same number of elements" ( equinumerosity ), and generalising this definition to infinite sets leads to the concept of cardinal ...
In mathematics, a relation denotes some kind of relationship between two objects in a set, which may or may not hold. [1] As an example, " is less than " is a relation on the set of natural numbers ; it holds, for instance, between the values 1 and 3 (denoted as 1 < 3 ), and likewise between 3 and 4 (denoted as 3 < 4 ), but not between the ...
The set of all ordered pairs whose first entry is in some set A and whose second entry is in some set B is called the Cartesian product of A and B, and written A × B. A binary relation between sets A and B is a subset of A × B. The (a, b) notation may be used for other purposes, most notably as denoting open intervals on the real number line ...
Given a set and a partial order relation, typically the non-strict partial order , we may uniquely extend our notation to define four partial order relations , <,, and >, where is a non-strict partial order relation on , < is the associated strict partial order relation on (the irreflexive kernel of ), is the dual of , and > is the dual of <.
In Agrawal, ImieliĆski, Swami [2] a rule is defined only between a set and a single item, for . Every rule is composed by two different sets of items, also known as itemsets, X and Y, where X is called antecedent or left-hand-side (LHS) and Y consequent or right-hand-side (RHS). The antecedent is that item that can be found in the data while ...