Search results
Results from the WOW.Com Content Network
For "a" transmit its binary code. Step 2: NYT spawns two child nodes: 254 and 255, both with weight 0. Increase weight for root and 255. Code for "a", associated with node 255, is 1. For "b" transmit 0 (for NYT node) then its binary code. Step 3: NYT spawns two child nodes: 252 for NYT and 253 for leaf node, both with weight 0.
The advantage of choosing a primitive polynomial as the generator for a CRC code is that the resulting code has maximal total block length in the sense that all 1-bit errors within that block length have different remainders (also called syndromes) and therefore, since the remainder is a linear function of the block, the code can detect all 2 ...
PyCharm – Cross-platform Python IDE with code inspections available for analyzing code on-the-fly in the editor and bulk analysis of the whole project. PyDev – Eclipse-based Python IDE with code analysis available on-the-fly in the editor or at save time. Pylint – Static code analyzer. Quite stringent; includes many stylistic warnings as ...
Lexicographic code; List decoding; Locally decodable code; Locally recoverable code; Locally testable code; Long code (mathematics) Longitudinal redundancy check; Low-density parity-check code; Luhn algorithm
Low-density parity-check (LDPC) codes are a class of highly efficient linear block codes made from many single parity check (SPC) codes. They can provide performance very close to the channel capacity (the theoretical maximum) using an iterated soft-decision decoding approach, at linear time complexity in terms of their block length.
A code has all-symbol locality and availability if every code symbol can be recovered from disjoint repair sets of other symbols, each set of size at most symbols. Such codes are called ( r , t ) a {\displaystyle (r,t)_{a}} -LRC.
The on-line textbook: Information Theory, Inference, and Learning Algorithms, by David J.C. MacKay, contains chapters on elementary error-correcting codes; on the theoretical limits of error-correction; and on the latest state-of-the-art error-correcting codes, including low-density parity-check codes, turbo codes, and fountain codes.
LDPC codes functionally are defined by a sparse parity-check matrix. This sparse matrix is often randomly generated, subject to the sparsity constraints—LDPC code construction is discussed later. These codes were first designed by Robert Gallager in 1960. [5] Below is a graph fragment of an example LDPC code using Forney's factor graph notation.