enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Polynomial regression - Wikipedia

    en.wikipedia.org/wiki/Polynomial_regression

    Although polynomial regression fits a nonlinear model to the data, as a statistical estimation problem it is linear, in the sense that the regression function E(y | x) is linear in the unknown parameters that are estimated from the data. For this reason, polynomial regression is considered to be a special case of multiple linear regression. [1]

  3. Non-linear least squares - Wikipedia

    en.wikipedia.org/wiki/Non-linear_least_squares

    These equations form the basis for the Gauss–Newton algorithm for a non-linear least squares problem. Note the sign convention in the definition of the Jacobian matrix in terms of the derivatives. Formulas linear in J {\displaystyle J} may appear with factor of − 1 {\displaystyle -1} in other articles or the literature.

  4. Linear least squares - Wikipedia

    en.wikipedia.org/wiki/Linear_least_squares

    Mathematically, linear least squares is the problem of approximately solving an overdetermined system of linear equations A x = b, where b is not an element of the column space of the matrix A. The approximate solution is realized as an exact solution to A x = b', where b' is the projection of b onto the column space of A. The best ...

  5. Polynomial evaluation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_evaluation

    This problem arises frequently in practice. In computational geometry, polynomials are used to compute function approximations using Taylor polynomials. In cryptography and hash tables, polynomials are used to compute k-independent hashing. In the former case, polynomials are evaluated using floating-point arithmetic, which is not exact. Thus ...

  6. Polynomial and rational function modeling - Wikipedia

    en.wikipedia.org/wiki/Polynomial_and_rational...

    A polynomial function is one that has the form = + + + + + where n is a non-negative integer that defines the degree of the polynomial. A polynomial with a degree of 0 is simply a constant function; with a degree of 1 is a line; with a degree of 2 is a quadratic; with a degree of 3 is a cubic, and so on.

  7. Curve fitting - Wikipedia

    en.wikipedia.org/wiki/Curve_fitting

    Polynomial curves fitting points generated with a sine function. The black dotted line is the "true" data, the red line is a first degree polynomial, the green line is second degree, the orange line is third degree and the blue line is fourth degree. The first degree polynomial equation = + is a line with slope a. A line will connect any two ...

  8. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    For example, a researcher is building a linear regression model using a dataset that contains 1000 patients (). If the researcher decides that five observations are needed to precisely define a straight line ( m {\displaystyle m} ), then the maximum number of independent variables ( n {\displaystyle n} ) the model can support is 4, because

  9. Iteratively reweighted least squares - Wikipedia

    en.wikipedia.org/wiki/Iteratively_reweighted...

    IRLS is used to find the maximum likelihood estimates of a generalized linear model, and in robust regression to find an M-estimator, as a way of mitigating the influence of outliers in an otherwise normally-distributed data set, for example, by minimizing the least absolute errors rather than the least square errors.