enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Geometric mean - Wikipedia

    en.wikipedia.org/wiki/Geometric_mean

    The geometric mean is more appropriate than the arithmetic mean for describing proportional growth, both exponential growth (constant proportional growth) and varying growth; in business the geometric mean of growth rates is known as the compound annual growth rate (CAGR). The geometric mean of growth over periods yields the equivalent constant ...

  3. AM–GM inequality - Wikipedia

    en.wikipedia.org/wiki/AM–GM_inequality

    The arithmetic mean, or less precisely the average, of a list of n numbers x 1, x 2, . . . , x n is the sum of the numbers divided by n: + + +. The geometric mean is similar, except that it is only defined for a list of nonnegative real numbers, and uses multiplication and a root in place of addition and division:

  4. Arithmetic–geometric mean - Wikipedia

    en.wikipedia.org/wiki/Arithmeticgeometric_mean

    In mathematics, the arithmetic–geometric mean (AGM or agM [1]) of two positive real numbers x and y is the mutual limit of a sequence of arithmetic means and a sequence of geometric means. The arithmetic–geometric mean is used in fast algorithms for exponential , trigonometric functions , and other special functions , as well as some ...

  5. QM-AM-GM-HM inequalities - Wikipedia

    en.wikipedia.org/wiki/QM-AM-GM-HM_Inequalities

    In mathematics, the QM-AM-GM-HM inequalities, also known as the mean inequality chain, state the relationship between the harmonic mean, geometric mean, arithmetic mean, and quadratic mean (also known as root mean square). Suppose that ,, …, are positive real numbers. Then

  6. Rate of return - Wikipedia

    en.wikipedia.org/wiki/Rate_of_return

    The geometric average return is equivalent to the cumulative return over the whole n periods, converted into a rate of return per period. Where the individual sub-periods are each equal (say, 1 year), and there is reinvestment of returns, the annualized cumulative return is the geometric average rate of return.

  7. Pythagorean means - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_means

    A geometric construction of the quadratic mean and the Pythagorean means (of two numbers a and b). Harmonic mean denoted by H, geometric by G, arithmetic by A and quadratic mean (also known as root mean square) denoted by Q. Comparison of the arithmetic, geometric and harmonic means of a pair of numbers.

  8. Weighted geometric mean - Wikipedia

    en.wikipedia.org/wiki/Weighted_geometric_mean

    The second form above illustrates that the logarithm of the geometric mean is the weighted arithmetic mean of the logarithms of the individual values. If all the weights are equal, the weighted geometric mean simplifies to the ordinary unweighted geometric mean.

  9. Volatility tax - Wikipedia

    en.wikipedia.org/wiki/Volatility_Tax

    [2] [3] This is not literally a tax in the sense of a levy imposed by a government, but the mathematical difference between geometric averages compared to arithmetic averages. This difference resembles a tax due to the mathematics which impose a lower compound return when returns vary over time, compared to a simple sum of returns.