Search results
Results from the WOW.Com Content Network
Winds drive ocean currents in the upper 100 meters of the ocean's surface. However, ocean currents also flow thousands of meters below the surface. These deep-ocean currents are driven by differences in the water's density, which is controlled by temperature (thermo) and salinity (haline). This process is known as thermohaline circulation.
As the size of an organism and the strength of the current increases, inertial forces will eventually dominate, and the flow becomes turbulent (large Re). As the size and strength decrease, viscous forces eventually dominate and the flow becomes laminar (small Re). Biologically there is an important distinction between plankton and nekton.
An ocean current is a continuous, directed movement of seawater generated by a number of forces acting upon the water, including wind, the Coriolis effect, breaking waves, cabbeling, and temperature and salinity differences. [1] Depth contours, shoreline configurations, and interactions with other currents influence a current's direction and ...
An ocean current is a continuous, directed flow of seawater caused by several forces acting upon the water. These include wind, the Coriolis effect, temperature and salinity differences. [15] Ocean currents are primarily horizontal water movements that have different origins such as tides for tidal currents, or wind and waves for surface currents.
Oceans occupy about 71% of the Earth's surface. Whilst the average depth of the oceans is about 3800 m, the deepest parts are almost 11000 m. The marine environment has a total volume (approximately 1370 x 10 6 km 3) that is 300 times larger for life than the volume of land and freshwater combined.
A vital system of Atlantic Ocean currents that influences weather across the world could collapse as soon as the late 2030s, scientists have suggested in a new study — a planetary-scale disaster ...
This gyre is characterized by a clockwise rotation of surface waters, driven by the combined influence of wind, the Earth's rotation, and the shape of the seafloor. The gyre plays a crucial role in the transport of heat, nutrients, and marine life in the Southern Ocean, affecting the distribution of sea ice and influencing regional climate ...
A system of ocean currents that transports heat northward across the North Atlantic could collapse by mid-century, according to a new study, and scientists have said before that such a collapse ...