enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    Linear programming (LP), also called linear optimization, is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements and objective are represented by linear relationships. Linear programming is a special case of mathematical programming (also known as mathematical optimization).

  3. Simplex algorithm - Wikipedia

    en.wikipedia.org/wiki/Simplex_algorithm

    [41] [42] There are polynomial-time algorithms for linear programming that use interior point methods: these include Khachiyan's ellipsoidal algorithm, Karmarkar's projective algorithm, and path-following algorithms. [15] The Big-M method is an alternative strategy for solving a linear program, using a single-phase simplex.

  4. Big M method - Wikipedia

    en.wikipedia.org/wiki/Big_M_method

    Solve the problem using the usual simplex method. For example, x + y ≤ 100 becomes x + y + s 1 = 100, whilst x + y ≥ 100 becomes x + y − s 1 + a 1 = 100. The artificial variables must be shown to be 0. The function to be maximised is rewritten to include the sum of all the artificial variables.

  5. Interior-point method - Wikipedia

    en.wikipedia.org/wiki/Interior-point_method

    An interior point method was discovered by Soviet mathematician I. I. Dikin in 1967. [1] The method was reinvented in the U.S. in the mid-1980s. In 1984, Narendra Karmarkar developed a method for linear programming called Karmarkar's algorithm, [2] which runs in probably polynomial time (() operations on L-bit numbers, where n is the number of variables and constants), and is also very ...

  6. HiGHS optimization solver - Wikipedia

    en.wikipedia.org/wiki/HiGHS_optimization_solver

    HiGHS has an interior point method implementation for solving LP problems, based on techniques described by Schork and Gondzio (2020). [10] It is notable for solving the Newton system iteratively by a preconditioned conjugate gradient method, rather than directly, via an LDL* decomposition. The interior point solver's performance relative to ...

  7. Dual linear program - Wikipedia

    en.wikipedia.org/wiki/Dual_linear_program

    We use this example to illustrate the proof of the weak duality theorem. Suppose that, in the primal LP, we want to get an upper bound on the objective 3 x 1 + 4 x 2 {\displaystyle 3x_{1}+4x_{2}} . We can use the constraint multiplied by some coefficient, say y 1 {\displaystyle y_{1}} .

  8. Assignment problem - Wikipedia

    en.wikipedia.org/wiki/Assignment_problem

    Some of the local methods assume that the graph admits a perfect matching; if this is not the case, then some of these methods might run forever. [1]: 3 A simple technical way to solve this problem is to extend the input graph to a complete bipartite graph, by adding artificial edges with very large weights. These weights should exceed the ...

  9. LP-type problem - Wikipedia

    en.wikipedia.org/wiki/LP-type_problem

    By using the recursive algorithm to solve a given problem, switching to the iterative algorithm for its recursive calls, and then switching again to Seidel's algorithm for the calls made by the iterative algorithm, it is possible solve a given LP-type problem using O(dn + d! d O(1) log n) violation tests.