enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    Linear programming (LP), also called linear optimization, is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements and objective are represented by linear relationships. Linear programming is a special case of mathematical programming (also known as mathematical optimization).

  3. HiGHS optimization solver - Wikipedia

    en.wikipedia.org/wiki/HiGHS_optimization_solver

    HiGHS has an interior point method implementation for solving LP problems, based on techniques described by Schork and Gondzio (2020). [10] It is notable for solving the Newton system iteratively by a preconditioned conjugate gradient method, rather than directly, via an LDL* decomposition. The interior point solver's performance relative to ...

  4. Linear programming relaxation - Wikipedia

    en.wikipedia.org/wiki/Linear_programming_relaxation

    This method starts from any relaxation of the given program, and finds an optimal solution using a linear programming solver. If the solution assigns integer values to all variables, it is also the optimal solution to the unrelaxed problem.

  5. Big M method - Wikipedia

    en.wikipedia.org/wiki/Big_M_method

    Solve the problem using the usual simplex method. For example, x + y ≤ 100 becomes x + y + s 1 = 100, whilst x + y ≥ 100 becomes x + y − s 1 + a 1 = 100. The artificial variables must be shown to be 0. The function to be maximised is rewritten to include the sum of all the artificial variables.

  6. lp_solve - Wikipedia

    en.wikipedia.org/wiki/Lp_solve

    lp_solve is a free software command line utility and library for solving linear programming and mixed integer programming problems. It ships with support for two file formats, MPS and lp_solve's own LP format. [ 1 ]

  7. GLOP - Wikipedia

    en.wikipedia.org/wiki/GLOP

    GLOP (the Google Linear Optimization Package) is Google's open-source linear programming solver, created by Google's Operations Research Team. It is written in C++ and was released to the public as part of Google's OR-Tools software suite in 2014. [1] GLOP uses a revised primal-dual simplex algorithm optimized for sparse matrices.

  8. Simplex algorithm - Wikipedia

    en.wikipedia.org/wiki/Simplex_algorithm

    [41] [42] There are polynomial-time algorithms for linear programming that use interior point methods: these include Khachiyan's ellipsoidal algorithm, Karmarkar's projective algorithm, and path-following algorithms. [15] The Big-M method is an alternative strategy for solving a linear program, using a single-phase simplex.

  9. Interior-point method - Wikipedia

    en.wikipedia.org/wiki/Interior-point_method

    An interior point method was discovered by Soviet mathematician I. I. Dikin in 1967. [1] The method was reinvented in the U.S. in the mid-1980s. In 1984, Narendra Karmarkar developed a method for linear programming called Karmarkar's algorithm, [2] which runs in provably polynomial time (() operations on L-bit numbers, where n is the number of variables and constants), and is also very ...