Search results
Results from the WOW.Com Content Network
If g is a primitive root modulo p, then g is also a primitive root modulo all powers p k unless g p −1 ≡ 1 (mod p 2); in that case, g + p is. [14] If g is a primitive root modulo p k, then g is also a primitive root modulo all smaller powers of p. If g is a primitive root modulo p k, then either g or g + p k (whichever one is odd) is a ...
Once a primitive kth root of unity x is obtained, every power is a th root of unity, but not necessarily a primitive one. The power x ℓ {\displaystyle x^{\ell }} is a primitive k {\displaystyle k} th root of unity if and only if k {\displaystyle k} and ℓ {\displaystyle \ell } are coprime .
2 is a primitive root mod 9. =) , ... The two orthogonality relations are [25] ... [50] in 1956, and proved in 2017 ...
For n = 1, the cyclotomic polynomial is Φ 1 (x) = x − 1 Therefore, the only primitive first root of unity is 1, which is a non-primitive n th root of unity for every n > 1. As Φ 2 (x) = x + 1, the only primitive second (square) root of unity is −1, which is also a non-primitive n th root of unity for every even n > 2.
In number theory, Artin's conjecture on primitive roots states that a given integer a that is neither a square number nor −1 is a primitive root modulo infinitely many primes p. The conjecture also ascribes an asymptotic density to these primes. This conjectural density equals Artin's constant or a rational multiple thereof.
In mathematics, a primitive root may mean: Primitive root modulo n in modular arithmetic; Primitive nth root of unity amongst the solutions of z n = 1 in a field; See ...
Jacobi's original tables use 10 or –10 or a number with a small power of this form as the primitive root whenever possible, while the second edition uses the smallest possible positive primitive root (Fletcher 1958). The term "canon arithmeticus" is occasionally used to mean any table of indices and powers of primitive roots.
In this case, a primitive element is also called a primitive root modulo q. For example, 2 is a primitive element of the field GF(3) and GF(5), but not of GF(7) since it generates the cyclic subgroup {2, 4, 1} of order 3; however, 3 is a primitive element of GF(7). The minimal polynomial of a primitive element is a primitive polynomial.