enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    In modular arithmetic, a number g is a primitive root modulo n if every number a coprime to n is congruent to a power of g modulo n. That is, g is a primitive root modulo n if for every integer a coprime to n, there is some integer k for which g k ≡ a (mod n). Such a value k is called the index or discrete logarithm of a to the base g modulo n.

  3. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    Weisstein, Eric W. "Primitive Root". MathWorld. Web-based tool to interactively compute group tables by John Jones; OEIS sequence A033948 (Numbers that have a primitive root (the multiplicative group modulo n is cyclic)) Numbers n such that the multiplicative group modulo n is the direct product of k cyclic groups:

  4. Euler's totient function - Wikipedia

    en.wikipedia.org/wiki/Euler's_totient_function

    Equivalently, the formula can be derived by the same argument applied to the multiplicative group of the n th roots of unity and the primitive d th roots of unity. The formula can also be derived from elementary arithmetic. [19] For example, let n = 20 and consider the positive fractions up to 1 with denominator 20:

  5. Multiplicative order - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_order

    If the order of a is actually equal to φ(n), and therefore as large as possible, then a is called a primitive root modulo n. This means that the group U(n) is cyclic and the residue class of a generates it. The order of a (mod n) also divides λ(n), a value of the Carmichael function, which is an even stronger statement than the divisibility ...

  6. Finite field - Wikipedia

    en.wikipedia.org/wiki/Finite_field

    As the 3rd and the 7th roots of unity belong to GF(4) and GF(8), respectively, the 54 generators are primitive n th roots of unity for some n in {9, 21, 63}. Euler's totient function shows that there are 6 primitive 9 th roots of unity, 12 primitive 21 st roots of unity, and 36 primitive 63 rd roots of unity.

  7. Dirichlet character - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_character

    In analytic number theory and related branches of mathematics, a complex-valued arithmetic function: is a Dirichlet character of modulus (where is a positive integer) if for all integers and : [1]

  8. Canon arithmeticus - Wikipedia

    en.wikipedia.org/wiki/Canon_arithmeticus

    The Canon arithmeticus is a set of mathematical tables of indices and powers with respect to primitive roots for prime powers less than 1000, originally published by Carl Gustav Jacob Jacobi . The tables were at one time used for arithmetical calculations modulo prime powers, though like many mathematical tables they have now been replaced by ...

  9. Carmichael function - Wikipedia

    en.wikipedia.org/wiki/Carmichael_function

    There are four primitive λ-roots modulo 15, namely 2, 7, 8, and 13 as . The roots 2 and 8 are congruent to powers of each other and the roots 7 and 13 are congruent to powers of each other, but neither 7 nor 13 is congruent to a power of 2 or 8 and vice versa.