Search results
Results from the WOW.Com Content Network
Some non-Newtonian fluids with shear-independent viscosity, however, still exhibit normal stress-differences or other non-Newtonian behavior. In a Newtonian fluid, the relation between the shear stress and the shear rate is linear, passing through the origin , the constant of proportionality being the coefficient of viscosity .
A non-Newtonian fluid is a fluid whose flow properties differ in any way from those of Newtonian fluids. Most commonly the viscosity of non-Newtonian fluids is a function of shear rate or shear rate history. However, there are some non-Newtonian fluids with shear-independent viscosity, that nonetheless exhibit normal stress-differences or other ...
A Newtonian fluid is a power-law fluid with a behaviour index of 1, where the shear stress is directly proportional to the shear rate: = These fluids have a constant viscosity, μ, across all shear rates and include many of the most common fluids, such as water, most aqueous solutions, oils, corn syrup, glycerine, air and other gases.
This is a solution in a non-viscous gas (compressible fluid) whose density, velocities and pressure goes to zero far from the origin. (Note this is not a solution to the Clay Millennium problem because that refers to incompressible fluids where ρ {\textstyle \rho } is a constant, and neither does it deal with the uniqueness of the Navier ...
The Herschel–Bulkley fluid is a generalized model of a non-Newtonian fluid, in which the strain experienced by the fluid is related to the stress in a complicated, non-linear way. Three parameters characterize this relationship: the consistency k , the flow index n , and the yield shear stress τ 0 {\\displaystyle \\tau _{0}} .
For premium support please call: 800-290-4726 more ways to reach us
Classification of fluids with shear stress as a function of shear rate: Pseudoplastic, Bingham plastic and Bingham pseudoplastic all show reduction in apparent viscosity with increasing shear rate. In rheology , shear thinning is the non-Newtonian behavior of fluids whose viscosity decreases under shear strain .
The equation of motion for Stokes flow can be obtained by linearizing the steady state Navier–Stokes equations.The inertial forces are assumed to be negligible in comparison to the viscous forces, and eliminating the inertial terms of the momentum balance in the Navier–Stokes equations reduces it to the momentum balance in the Stokes equations: [1]