Search results
Results from the WOW.Com Content Network
The density is usually on the order of 1000 kg/m^3, i.e. that of water. Consequently, if a liquid has dynamic viscosity of n centiPoise, and its density is not too different from that of water, then its kinematic viscosity is around n centiStokes. For gas, the dynamic viscosity is usually in the range of 10 to 20 microPascal-seconds, or 0.01 to ...
D is the mass diffusivity (m 2 /s). μ is the dynamic viscosity of the fluid (Pa·s = N·s/m 2 = kg/m·s) ρ is the density of the fluid (kg/m 3) Pe is the Peclet Number; Re is the Reynolds Number. The heat transfer analog of the Schmidt number is the Prandtl number (Pr). The ratio of thermal diffusivity to mass diffusivity is the Lewis number ...
m 3 s −1 [L] 3 [T] −1: Mass current per unit volume: s (no standard symbol) = / kg m −3 s −1 [M] [L] −3 [T] −1: Mass current, mass flow rate: I m = / kg s −1 [M][T] −1: Mass current density j m
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
The SI unit of dynamic viscosity is the newton-second per square meter (N·s/m 2), also frequently expressed in the equivalent forms pascal-second (Pa·s), kilogram per meter per second (kg·m −1 ·s −1) and poiseuille (Pl). The CGS unit is the poise (P, or g·cm −1 ·s −1 = 0.1 Pa·s), [28] named after Jean Léonard Marie Poiseuille.
ρ p is the mass density of the sphere [kg/m 3] ρ f is the mass density of the fluid [kg/m 3] g is the gravitational acceleration [m/s 2] Requiring the force balance F d = F e and solving for the velocity v gives the terminal velocity v s.
The poise is often used with the metric prefix centi-because the viscosity of water at 20 °C (standard conditions for temperature and pressure) is almost exactly 1 centipoise. [3] A centipoise is one hundredth of a poise, or one millipascal-second (mPa⋅s) in SI units (1 cP = 10 −3 Pa⋅s = 1 mPa⋅s). [4] The CGS symbol for the centipoise ...
μ is the dynamic viscosity of the fluid (Pa·s = N·s/m 2 = kg/(m·s)); Q is the volumetric flow rate, used here to measure flow instead of mean velocity according to Q = π / 4 D c 2 <v> (m 3 /s). Note that this laminar form of Darcy–Weisbach is equivalent to the Hagen–Poiseuille equation, which is analytically derived from the ...