Search results
Results from the WOW.Com Content Network
In polymer chemistry, free-radical polymerization (FRP) is a method of polymerization by which a polymer forms by the successive addition of free-radical building blocks (repeat units). Free radicals can be formed by a number of different mechanisms, usually involving separate initiator molecules .
Living free radical polymerization is a type of living polymerization where the active polymer chain end is a free radical. Several methods exist. Several methods exist. IUPAC recommends [ 1 ] to use the term " reversible-deactivation radical polymerization " instead of "living free radical polymerization", though the two terms are not synonymous.
These techniques involved catalytic chain transfer polymerization, iniferter mediated polymerization, stable free radical mediated polymerization (SFRP), atom transfer radical polymerization (ATRP), reversible addition-fragmentation chain transfer polymerization, and iodine-transfer polymerization. In "living" radical polymerization (or ...
IUPAC recommends to further simplify "chain-growth polymerization" to "chain polymerization". It is a kind of polymerization where an active center (free radical or ion) is formed, and a plurality of monomers can be polymerized together in a short period of time to form a macromolecule having a large molecular weight.
Reversible-addition-fragmentation chain-transfer polymerization (RAFT polymerization, RAFT): Degenerate-transfer radical polymerization in which chain activation and chain deactivation involve a degenerative chain-transfer process which occurs by a two-step addition-fragmentation mechanism. Note 1: Examples of RAFT agents include certain ...
The nature of chain transfer reactions is currently well understood and is given in standard polymerization textbooks. Since the 1980s, however, a particularly active area of research has been in the various forms of free radical living polymerizations including catalytic chain transfer polymerization, RAFT, and iodine transfer polymerization ...
In chain-growth (or chain) polymerization, the only chain-extension reaction step is the addition of a monomer to a growing chain with an active center such as a free radical, cation, or anion. Once the growth of a chain is initiated by formation of an active center, chain propagation is usually rapid by addition of a sequence of monomers.
The distinction between "step-growth polymerization" and "chain-growth polymerization" was introduced by Paul Flory in 1953, and refers to the reaction mechanisms, respectively: [4] by functional groups (step-growth polymerization) by free-radical or ion (chain-growth polymerization)