Search results
Results from the WOW.Com Content Network
Text segmentation is the process of dividing written text into meaningful units, such as words, sentences, or topics.The term applies both to mental processes used by humans when reading text, and to artificial processes implemented in computers, which are the subject of natural language processing.
Traditionally, character animation has been a manual process. However, poses can be synced directly to a real-life actor through specialized pose estimation systems. Older systems relied on markers or specialized suits. Recent advances in pose estimation and motion capture have enabled markerless applications, sometimes in real time. [25]
Sentence boundary disambiguation (SBD), also known as sentence breaking, sentence boundary detection, and sentence segmentation, is the problem in natural language processing of deciding where sentences begin and end.
With James H. Martin, he wrote the textbook Speech and Language Processing: An Introduction to Natural Language Processing, Speech Recognition, and Computational Linguistics; Roger Schank – introduced the conceptual dependency theory for natural-language understanding. [23] Jean E. Fox Tree – Alan Turing – originator of the Turing Test.
Text simplification is an operation used in natural language processing to change, enhance, classify, or otherwise process an existing body of human-readable text so its grammar and structure is greatly simplified while the underlying meaning and information remain the same. Text simplification is an important area of research because of ...
Sentence processing takes place whenever a reader or listener processes a language utterance, either in isolation or in the context of a conversation or a text. Many studies of the human language comprehension process have focused on reading of single utterances (sentences) without context.
The text processing of a regular expression is a virtual editing machine, having a primitive programming language that has named registers (identifiers), and named positions in the sequence of characters comprising the text. Using these, the "text processor" can, for example, mark a region of text, and then move it.
In natural language processing, a word embedding is a representation of a word. The embedding is used in text analysis.Typically, the representation is a real-valued vector that encodes the meaning of the word in such a way that the words that are closer in the vector space are expected to be similar in meaning. [1]