enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Weight-balanced tree - Wikipedia

    en.wikipedia.org/wiki/Weight-balanced_tree

    With the new operations, the implementation of weight-balanced trees can be more efficient and highly-parallelizable. [10] [11] Join: The function Join is on two weight-balanced trees t 1 and t 2 and a key k and will return a tree containing all elements in t 1, t 2 as well as k. It requires k to be greater than all keys in t 1 and smaller than ...

  3. File:Height Balanced Binary Tree.pdf - Wikipedia

    en.wikipedia.org/wiki/File:Height_Balanced...

    English: Analysis of data structures, tree compared to hash and array based structures, height balanced tree compared to more perfectly balanced trees, a simple height balanced tree class with test code, comparable statistics for tree performance, statistics of worst case strictly-AVL-balanced trees versus perfect full binary trees.

  4. Join-based tree algorithms - Wikipedia

    en.wikipedia.org/wiki/Join-based_tree_algorithms

    If the two trees are balanced, join simply creates a new node with left subtree t 1, root k and right subtree t 2. Suppose that t 1 is heavier (this "heavier" depends on the balancing scheme) than t 2 (the other case is symmetric). Join follows the right spine of t 1 until a node c which is balanced with t 2.

  5. B-tree - Wikipedia

    en.wikipedia.org/wiki/B-tree

    This results in a tree structure where both insertion and search operations descend from the root to the leaf. Write locks are only required as a tree block is modified. This maximizes access concurrency by multiple users, an important consideration for databases and/or other B-tree-based ISAM storage methods. The cost associated with this ...

  6. Self-balancing binary search tree - Wikipedia

    en.wikipedia.org/wiki/Self-balancing_binary...

    Splay trees and treaps are self-balancing but not height-balanced, as their height is not guaranteed to be logarithmic in the number of items. Self-balancing binary search trees provide efficient implementations for mutable ordered lists , and can be used for other abstract data structures such as associative arrays , priority queues and sets .

  7. Binary tree - Wikipedia

    en.wikipedia.org/wiki/Binary_tree

    A perfect tree is therefore always complete but a complete tree is not always perfect. Some authors use the term complete to refer instead to a perfect binary tree as defined above, in which case they call this type of tree (with a possibly not filled last level) an almost complete binary tree or nearly complete binary tree.

  8. B+ tree - Wikipedia

    en.wikipedia.org/wiki/B+_tree

    A B+ tree can be viewed as a B-tree in which each node contains only keys (not key–value pairs), and to which an additional level is added at the bottom with linked leaves. The primary value of a B+ tree is in storing data for efficient retrieval in a block-oriented storage context — in particular, filesystems .

  9. k-d tree - Wikipedia

    en.wikipedia.org/wiki/K-d_tree

    Removing a point from a balanced k-d tree takes O(log n) time. Querying an axis-parallel range in a balanced k-d tree takes O(n 1−1/k +m) time, where m is the number of the reported points, and k the dimension of the k-d tree. Finding 1 nearest neighbour in a balanced k-d tree with randomly distributed points takes O(log n) time on average.