enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Packing problems - Wikipedia

    en.wikipedia.org/wiki/Packing_problems

    To convert between these two formulations of the problem, the square side for unit circles will be = + /. The optimal packing of 15 circles in a square Optimal solutions have been proven for n ≤ 30. Packing circles in a rectangle; Packing circles in an isosceles right triangle - good estimates are known for n < 300.

  3. Square–cube law - Wikipedia

    en.wikipedia.org/wiki/Squarecube_law

    Its volume would be multiplied by the cube of 2 and become 8 m 3. The original cube (1 m sides) has a surface area to volume ratio of 6:1. The larger (2 m sides) cube has a surface area to volume ratio of (24/8) 3:1. As the dimensions increase, the volume will continue to grow faster than the surface area. Thus the squarecube law.

  4. Square packing - Wikipedia

    en.wikipedia.org/wiki/Square_packing

    Square packing in a square is the problem of determining the maximum number of unit squares (squares of side length one) that can be packed inside a larger square of side length . If a {\displaystyle a} is an integer , the answer is a 2 , {\displaystyle a^{2},} but the precise – or even asymptotic – amount of unfilled space for an arbitrary ...

  5. Four-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Four-dimensional_space

    Three-dimensional objects are bounded by two-dimensional surfaces: a cube is bounded by 6 square faces. By applying dimensional analogy, one may infer that a four-dimensional cube, known as a tesseract, is bounded by three-dimensional volumes. And indeed, this is the case: mathematics shows that the tesseract is bounded by 8 cubes.

  6. Hypercube - Wikipedia

    en.wikipedia.org/wiki/Hypercube

    In geometry, a hypercube is an n-dimensional analogue of a square (n = 2) and a cube (n = 3); the special case for n = 4 is known as a tesseract.It is a closed, compact, convex figure whose 1-skeleton consists of groups of opposite parallel line segments aligned in each of the space's dimensions, perpendicular to each other and of the same length.

  7. Sphere packing in a cube - Wikipedia

    en.wikipedia.org/wiki/Sphere_packing_in_a_cube

    It is the three-dimensional equivalent of the circle packing in a square problem in two dimensions. The problem consists of determining the optimal packing of a given number of spheres inside the cube. Gensane [1] traces the origin of the problem to work of J. Schaer in the mid-1960s. [2]

  8. Block-stacking problem - Wikipedia

    en.wikipedia.org/wiki/Block-stacking_problem

    The block-stacking problem is the following puzzle: Place identical rigid rectangular blocks in a stable stack on a table edge in such a way as to maximize the overhang. Paterson et al. (2007) provide a long list of references on this problem going back to mechanics texts from the middle of the 19th century.

  9. Circle packing in a square - Wikipedia

    en.wikipedia.org/wiki/Circle_packing_in_a_square

    Circle packing in a square is a packing problem in recreational mathematics, where the aim is to pack n unit circles into the smallest possible square. Equivalently, the problem is to arrange n points in a unit square aiming to get the greatest minimal separation, d n, between points. [1] To convert between these two formulations of the problem ...