enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Differentiable manifold - Wikipedia

    en.wikipedia.org/wiki/Differentiable_manifold

    A differentiable manifold (of class C k) consists of a pair (M, O M) where M is a second countable Hausdorff space, and O M is a sheaf of local R-algebras defined on M, such that the locally ringed space (M, O M) is locally isomorphic to (R n, O). In this way, differentiable manifolds can be thought of as schemes modeled on R n.

  3. Manifold - Wikipedia

    en.wikipedia.org/wiki/Manifold

    In particular it is possible to use calculus on a differentiable manifold. Each point of an n-dimensional differentiable manifold has a tangent space. This is an n-dimensional Euclidean space consisting of the tangent vectors of the curves through the point. Two important classes of differentiable manifolds are smooth and analytic manifolds ...

  4. Exterior derivative - Wikipedia

    en.wikipedia.org/wiki/Exterior_derivative

    Because the exterior derivative d has the property that d 2 = 0, it can be used as the differential (coboundary) to define de Rham cohomology on a manifold. The k -th de Rham cohomology (group) is the vector space of closed k -forms modulo the exact k -forms; as noted in the previous section, the Poincaré lemma states that these vector spaces ...

  5. Differential structure - Wikipedia

    en.wikipedia.org/wiki/Differential_structure

    For compact manifolds, results depend on the complexity of the manifold as measured by the second Betti number b 2. For large Betti numbers b 2 > 18 in a simply connected 4-manifold, one can use a surgery along a knot or link to produce a new differential structure. With the help of this procedure one can produce countably infinite many ...

  6. Whitney immersion theorem - Wikipedia

    en.wikipedia.org/wiki/Whitney_immersion_theorem

    Similarly, every smooth -dimensional manifold can be immersed in the -dimensional sphere (this removes the > constraint). The weak version, for 2 m + 1 {\displaystyle 2m+1} , is due to transversality ( general position , dimension counting ): two m -dimensional manifolds in R 2 m {\displaystyle \mathbf {R} ^{2m}} intersect generically in a 0 ...

  7. de Rham theorem - Wikipedia

    en.wikipedia.org/wiki/De_Rham_theorem

    Call an open cover of a manifold a "de Rham cover", if all elements of the cover are de Rham, as well as all of their finite intersections. One shows that convex sets in R n {\displaystyle \mathbb {R} ^{n}} are de Rham, basically by the homotopy invariance of both cohomologies in question.

  8. Category of manifolds - Wikipedia

    en.wikipedia.org/wiki/Category_of_manifolds

    The objects of Man • p are pairs (,), where is a manifold along with a basepoint , and its morphisms are basepoint-preserving p-times continuously differentiable maps: e.g. : (,) (,), such that () =. [1] The category of pointed manifolds is an example of a comma category - Man • p is exactly ({}), where {} represents an arbitrary singleton ...

  9. Milnor's sphere - Wikipedia

    en.wikipedia.org/wiki/Milnor's_sphere

    In mathematics, specifically differential and algebraic topology, during the mid 1950's John Milnor [1] pg 14 was trying to understand the structure of ()-connected manifolds of dimension (since -connected -manifolds are homeomorphic to spheres, this is the first non-trivial case after) and found an example of a space which is homotopy equivalent to a sphere, but was not explicitly diffeomorphic.