Search results
Results from the WOW.Com Content Network
The frequency drifts from higher to lower values because it depends on the electron density, and the shock propagates outward away from the Sun through lower and lower densities. By using a model for the Sun's atmospheric density, the frequency drift rate can then be used to estimate the speed of the shock wave.
Given a reference model of the Sun, the differences between its mode frequencies and those of the Sun, if small, are weighted averages of the differences between the Sun's structure and that of the reference model. The frequency differences can then be used to infer those structural differences.
Although the solar corona is a source of extreme ultraviolet and X-ray radiation, these rays make up only a very small amount of the power output of the Sun (see spectrum at right). The spectrum of nearly all solar electromagnetic radiation striking the Earth's atmosphere spans a range of 100 nm to about 1 mm (1,000,000 nm).
NASA says the sun is in the highly active "maximum phase" of its 11-year solar cycle.. That means there will probably be big solar storms bringing beautiful aurora in the next year or so. Solar ...
Given Solar Orbiter’s proximity to the sun, the spacecraft had to be rotated after each image to capture every part of the sun’s face. As a result, each image is the result of a mosaic of 25 ...
As the angle between the surface and the Sun moves from normal, the insolation is reduced in proportion to the angle's cosine; see effect of Sun angle on climate. In the figure, the angle shown is between the ground and the sunbeam rather than between the vertical direction and the sunbeam; hence the sine rather than the cosine is appropriate.
The Sun is 1.4 million kilometers (4.643 light-seconds) wide, about 109 times wider than Earth, or four times the Lunar distance, and contains 99.86% of all Solar System mass. The Sun is a G-type main-sequence star that makes up about 99.86% of the mass of the Solar System. [26]
The frequency distributions of various flare phenomena can be characterized by power-law distributions. For example, the peak fluxes of radio, extreme ultraviolet, and hard and soft X-ray emissions; total energies; and flare durations (see § Duration ) have been found to follow power-law distributions.