Search results
Results from the WOW.Com Content Network
[2] [3] The figure illustrates a deterministic finite automaton using a state diagram. In this example automaton, there are three states: S 0, S 1, and S 2 (denoted graphically by circles). The automaton takes a finite sequence of 0s and 1s as input. For each state, there is a transition arrow leading out to a next state for both 0 and 1.
According to Hill and Gauch, [1] DCA suppresses two artifacts inherent in most other multivariate analyses when applied to gradient data. An example is a time-series of plant species colonising a new habitat; early successional species are replaced by mid-successional species, then by late successional ones (see example below).
Direct coupling analysis or DCA is an umbrella term comprising several methods for analyzing sequence data in computational biology. [1] The common idea of these methods is to use statistical modeling to quantify the strength of the direct relationship between two positions of a biological sequence , excluding effects from other positions.
State diagram for a turnstile A turnstile. An example of a simple mechanism that can be modeled by a state machine is a turnstile. [4] [5] A turnstile, used to control access to subways and amusement park rides, is a gate with three rotating arms at waist height, one across the entryway.
DCA provides a way to reduce large ensembles from weather forecasts [2] or climate models [3] to just two patterns. The first pattern is the ensemble mean, and the second pattern is the DCA pattern, which represents variability around the ensemble mean in a way that takes impact into account.
A simple alternative to the above algorithm uses chain decompositions, which are special ear decompositions depending on DFS-trees. [3] Chain decompositions can be computed in linear time by this traversing rule. Let C be a chain decomposition of G. Then G is 2-vertex-connected if and only if G has minimum degree 2 and C 1 is the only cycle in C.
The same goes for Los Angeles, which defeated San Francisco in Week 3. NFL playoff bracket entering Week 13. If the season ended after Week 12, here's how the NFL playoff bracket would look: AFC.
A decoherence-free subspace (DFS) is a subspace of a quantum system's Hilbert space that is invariant to non-unitary dynamics. Alternatively stated, they are a small section of the system Hilbert space where the system is decoupled from the environment and thus its evolution is completely unitary.