Search results
Results from the WOW.Com Content Network
The inductive effect can be used to determine the stability of a molecule depending on the charge present on the atom and the groups bonded to the atom. For example, if an atom has a positive charge and is attached to a - I group its charge becomes 'amplified' and the molecule becomes more unstable.
The inductive effect is the transmission of charge through covalent bonds and Bent's rule provides a mechanism for such results via differences in hybridisation. In the table below, [ 26 ] as the groups bonded to the central carbon become more electronegative, the central carbon becomes more electron-withdrawing as measured by the polar ...
An electric effect influences the structure, reactivity, or properties of a molecule but is neither a traditional bond nor a steric effect. [1] In organic chemistry , the term stereoelectronic effect is also used to emphasize the relation between the electronic structure and the geometry ( stereochemistry ) of a molecule.
Electron-withdrawing groups exert an "inductive" or "electron-pulling" effect on covalent bonds. The strength of the electron-withdrawing group is inversely proportional to the pKa of the carboxylic acid. [2] The inductive effect is cumulative: trichloroacetic acid is 1000x stronger than chloroacetic acid.
In general, the resonance effect of elements in the third period and beyond is relatively weak. This is mainly because of the relatively poor orbital overlap of the substituent's 3p (or higher) orbital with the 2p orbital of the carbon. Due to a stronger resonance effect and inductive effect than the heavier halogens, fluorine is anomalous.
Most organic bases are considered to be weak.Many factors can affect the strength of the compounds. One such factor is the inductive effect.A simple explanation of the term would state that electropositive atoms (such as carbon groups) attached in close proximity to the potential proton acceptor have an "electron-releasing" effect, such that the positive charge acquired by the proton acceptor ...
A field effect is the polarization of a molecule through space. The effect is a result of an electric field produced by charge localization in a molecule. [1] This field, which is substituent and conformation dependent, can influence structure and reactivity by manipulating the location of electron density in bonds and/or the overall molecule. [2]
It was developed by Robert W. Taft in 1952 [2] [3] [4] as a modification to the Hammett equation. [5] While the Hammett equation accounts for how field, inductive, and resonance effects influence reaction rates, the Taft equation also describes the steric effects of a substituent. The Taft equation is written as: