Search results
Results from the WOW.Com Content Network
Apache Hadoop (/ h ə ˈ d uː p /) is a collection of open-source software utilities for reliable, scalable, distributed computing.It provides a software framework for distributed storage and processing of big data using the MapReduce programming model.
Apache Hive is a data warehouse software project. It is built on top of Apache Hadoop for providing data query and analysis. [3] [4] Hive gives an SQL-like interface to query data stored in various databases and file systems that integrate with Hadoop.
MapReduce is a programming model and an associated implementation for processing and generating big data sets with a parallel and distributed algorithm on a cluster. [1] [2] [3]A MapReduce program is composed of a map procedure, which performs filtering and sorting (such as sorting students by first name into queues, one queue for each name), and a reduce method, which performs a summary ...
Data-intensive computing is intended to address this need. Parallel processing approaches can be generally classified as either compute-intensive, or data-intensive. [6] [7] [8] Compute-intensive is used to describe application programs that are compute-bound. Such applications devote most of their execution time to computational requirements ...
The company employed contributors to the open source software project Apache Hadoop. [5] The Hortonworks Data Platform (HDP) product, first released in June 2012, [6] included Apache Hadoop and was used for storing, processing, and analyzing large volumes of data. The platform was designed to deal with data from many sources and formats.
Big data "size" is a constantly moving target; as of 2012 ranging from a few dozen terabytes to many zettabytes of data. [26] Big data requires a set of techniques and technologies with new forms of integration to reveal insights from data-sets that are diverse, complex, and of a massive scale. [27]
MapR was a business software company headquartered in Santa Clara, California.MapR software provides access to a variety of data sources from a single computer cluster, including big data workloads such as Apache Hadoop and Apache Spark, a distributed file system, a multi-model database management system, and event stream processing, combining analytics in real-time with operational applications.
Cascading is a software abstraction layer for Apache Hadoop and Apache Flink. Cascading is used to create and execute complex data processing workflows on a Hadoop cluster using any JVM-based language (Java, JRuby, Clojure, etc.), hiding the underlying complexity of MapReduce jobs. It is open source and available under the Apache License.