enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    In statistics, the 68–95–99.7 rule, also known as the empirical rule, and sometimes abbreviated 3sr, is a shorthand used to remember the percentage of values that lie within an interval estimate in a normal distribution: approximately 68%, 95%, and 99.7% of the values lie within one, two, and three standard deviations of the mean, respectively.

  3. Chebyshev's inequality - Wikipedia

    en.wikipedia.org/wiki/Chebyshev's_inequality

    The rule is often called Chebyshev's theorem, about the range of standard deviations around the mean, in statistics. The inequality has great utility because it can be applied to any probability distribution in which the mean and variance are defined. For example, it can be used to prove the weak law of large numbers.

  4. Chebyshev's theorem - Wikipedia

    en.wikipedia.org/wiki/Chebyshev's_theorem

    Chebyshev's theorem is any of several theorems proven by Russian mathematician Pafnuty Chebyshev. Bertrand's postulate , that for every n there is a prime between n and 2 n . Chebyshev's inequality , on the range of standard deviations around the mean, in statistics

  5. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    This fact is known as the 68–95–99.7 (empirical) rule, or the 3-sigma rule. More precisely, the probability that a normal deviate lies in the range between ...

  6. Law of large numbers - Wikipedia

    en.wikipedia.org/wiki/Law_of_large_numbers

    In fact, Chebyshev's proof works so long as the variance of the average of the first n values goes to zero as n goes to infinity. [15] As an example, assume that each random variable in the series follows a Gaussian distribution (normal distribution) with mean zero, but with variance equal to 2 n / log ⁡ ( n + 1 ) {\displaystyle 2n/\log(n+1 ...

  7. Standard deviation - Wikipedia

    en.wikipedia.org/wiki/Standard_deviation

    If the standard deviation were zero, then all men would share an identical height of 69 inches. Three standard deviations account for 99.73% of the sample population being studied, assuming the distribution is normal or bell-shaped (see the 68–95–99.7 rule, or the empirical rule, for more information).

  8. Concentration inequality - Wikipedia

    en.wikipedia.org/wiki/Concentration_inequality

    The Dvoretzky–Kiefer–Wolfowitz inequality bounds the difference between the real and the empirical cumulative distribution function. Given a natural number n {\displaystyle n} , let X 1 , X 2 , … , X n {\displaystyle X_{1},X_{2},\dots ,X_{n}} be real-valued independent and identically distributed random variables with cumulative ...

  9. Empirical statistical laws - Wikipedia

    en.wikipedia.org/wiki/Empirical_statistical_laws

    It states that roughly 80% of the effects come from 20% of the causes, and is thus also known as the 80/20 rule. [2] In business, the 80/20 rule says that 80% of your business comes from just 20% of your customers. [3] In software engineering, it is often said that 80% of the errors are caused by just 20% of the bugs.