Search results
Results from the WOW.Com Content Network
Example 2: a function f is uniformly continuous on the semi-open interval [0,∞) if and only if it is continuous at the standard points of the interval, and in addition, the natural extension f* is microcontinuous at every positive infinite hyperreal point. Example 3: similarly, the failure of uniform continuity for the squaring function
respectively. If these limits exist at p and are equal there, then this can be referred to as the limit of f(x) at p. [7] If the one-sided limits exist at p, but are unequal, then there is no limit at p (i.e., the limit at p does not exist). If either one-sided limit does not exist at p, then the limit at p also does not exist.
The function in example 2, a jump discontinuity. Consider the function = {< = > Then, the point = is a jump discontinuity.. In this case, a single limit does not exist because the one-sided limits, and + exist and are finite, but are not equal: since, +, the limit does not exist.
By Darboux's theorem, the derivative of any differentiable function is a Darboux function. In particular, the derivative of the function (/) is a Darboux function even though it is not continuous at one point. An example of a Darboux function that is nowhere continuous is the Conway base 13 function.
Limits can be difficult to compute. There exist limit expressions whose modulus of convergence is undecidable. In recursion theory, the limit lemma proves that it is possible to encode undecidable problems using limits. [14] There are several theorems or tests that indicate whether the limit exists. These are known as convergence tests.
The value of this limit, should it exist, is the (C, α) sum of the integral. An integral is (C, 0) summable precisely when it exists as an improper integral. However, there are integrals which are (C, α) summable for α > 0 which fail to converge as improper integrals (in the sense of Riemann or Lebesgue).
In general, any infinite series is the limit of its partial sums. For example, an analytic function is the limit of its Taylor series, within its radius of convergence. = =. This is known as the harmonic series. [6]
In mathematics, the ratio test is a test (or "criterion") for the convergence of a series =, where each term is a real or complex number and a n is nonzero when n is large. The test was first published by Jean le Rond d'Alembert and is sometimes known as d'Alembert's ratio test or as the Cauchy ratio test.