Search results
Results from the WOW.Com Content Network
FaceNet is a facial recognition system developed by Florian Schroff, Dmitry Kalenichenko and James Philbina, a group of researchers affiliated with Google.The system was first presented at the 2015 IEEE Conference on Computer Vision and Pattern Recognition. [1]
This is a list of datasets for machine learning research. It is part of the list of datasets for machine-learning research . These datasets consist primarily of images or videos for tasks such as object detection , facial recognition , and multi-label classification .
The position of these rectangles is defined relative to a detection window that acts like a bounding box to the target object (the face in this case). In the detection phase of the Viola–Jones object detection framework, a window of the target size is moved over the input image, and for each subsection of the image the Haar-like feature is ...
The face recognition system is deployed to identify individuals among the travellers that are sought by the Panamanian National Police or Interpol. [140] Tocumen International Airport operates an airport-wide surveillance system using hundreds of live face recognition cameras to identify wanted individuals passing through the airport.
Automatic face detection with OpenCV. Face detection is a computer technology being used in a variety of applications that identifies human faces in digital images. [1] Face detection also refers to the psychological process by which humans locate and attend to faces in a visual scene.
A convolutional neural network (CNN) is a regularized type of feed-forward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [1]
Objects detected with OpenCV's Deep Neural Network module (dnn) by using a YOLOv3 model trained on COCO dataset capable to detect objects of 80 common classes. Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. [1]
The Viola–Jones object detection framework is a machine learning object detection framework proposed in 2001 by Paul Viola and Michael Jones. [1] [2] It was motivated primarily by the problem of face detection, although it can be adapted to the detection of other object classes. In short, it consists of a sequence of classifiers.