Search results
Results from the WOW.Com Content Network
An orbital plane as viewed relative to a plane of reference. An orbital plane can also be seen in relative to conic sections, in which the orbital path is defined as the intersection between a plane and a cone. Parabolic (1) and hyperbolic (3) orbits are escape orbits, whereas elliptical and circular orbits (2) are captive. The orbital plane of ...
It is expressed as the angle between a reference plane and the orbital plane or axis of direction of the orbiting object. For a satellite orbiting the Earth directly above the Equator, the plane of the satellite's orbit is the same as the Earth's equatorial plane, and the satellite's orbital inclination is 0°. The general case for a circular ...
The heliocentric ecliptic system describes the planets' orbital movement around the Sun, and centers on the barycenter of the Solar System (i.e. very close to the center of the Sun). The system is primarily used for computing the positions of planets and other Solar System bodies, as well as defining their orbital elements.
The inclination of a planet tells how far above or below an established reference plane its orbit is tilted. In the Solar System, the reference plane is the plane of Earth's orbit, called the ecliptic. For exoplanets, the plane, known as the sky plane or plane of the sky, is the plane perpendicular to the observer's line of sight from Earth. [66]
An animation showing a low eccentricity orbit (near-circle, in red), and a high eccentricity orbit (ellipse, in purple). In celestial mechanics, an orbit (also known as orbital revolution) is the curved trajectory of an object [1] such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such ...
Uranus and Neptune are ice giants, [168] meaning they are largely composed of 'ice' in the astronomical sense (chemical compounds with melting points of up to a few hundred kelvins [166] such as water, methane, ammonia, hydrogen sulfide, and carbon dioxide. [169]) Icy substances comprise the majority of the satellites of the giant planets and ...
The ecliptic or invariable plane for planets, asteroids, comets, etc. within the Solar System, as these bodies generally have orbits that lie close to the ecliptic. The equatorial plane of the orbited body for satellites orbiting with small semi-major axes; The local Laplace plane for satellites orbiting with intermediate-to-large semi-major axes
The orbits of planets around the Sun do not really follow an identical ellipse each time, but actually trace out a flower-petal shape because the major axis of each planet's elliptical orbit also precesses within its orbital plane, partly in response to perturbations in the form of the changing gravitational forces exerted by other planets.