Search results
Results from the WOW.Com Content Network
The hydraulic diameter is similarly defined as 4 times the cross-sectional area of a pipe A, divided by its "wetted" perimeter P. For a circular pipe of radius R, at full flow, this is = = as one would expect. This is equivalent to the above definition of the 2D mean diameter.
where C is the circumference of a circle, d is the diameter, and r is the radius.More generally, = where L and w are, respectively, the perimeter and the width of any curve of constant width.
The diameter of a circle is exactly twice its radius. However, this is true only for a circle, and only in the Euclidean metric. Jung's theorem provides more general inequalities relating the diameter to the radius.
Using radians, the formula for the arc length s of a circular arc of radius r and subtending a central angle of measure 𝜃 is =, and the formula for the area A of a circular sector of radius r and with central angle of measure 𝜃 is A = 1 2 θ r 2 . {\displaystyle A={\frac {1}{2}}\theta r^{2}.}
The circumference of a circle with radius r is 2πr. The area of a circle with radius r is πr 2. The area of an ellipse with semi-major axis a and semi-minor axis b is πab. The volume of a sphere with radius r is 4 / 3 πr 3. The surface area of a sphere with radius r is 4πr 2.
where r is the radius and d is the diameter of the sphere. Archimedes first derived this formula by showing that the volume inside a sphere is twice the volume between the sphere and the circumscribed cylinder of that sphere (having the height and diameter equal to the diameter of the sphere). [6]
Let A′ be the point opposite A on the circle, so that A′A is a diameter, and A′AB is an inscribed triangle on a diameter. By Thales' theorem, this is a right triangle with right angle at B. Let the length of A′B be c n, which we call the complement of s n; thus c n 2 +s n 2 = (2r) 2. Let C bisect the arc from A to B, and let C′ be the ...
The above formula can be rearranged to solve for the circumference: = =. The ratio of the circle's circumference to its radius is equivalent to 2 π {\displaystyle 2\pi } . [ a ] This is also the number of radians in one turn .