Search results
Results from the WOW.Com Content Network
Air–fuel ratio (AFR) is the mass ratio of air to a solid, liquid, or gaseous fuel present in a combustion process. The combustion may take place in a controlled manner such as in an internal combustion engine or industrial furnace, or may result in an explosion (e.g., a dust explosion). The air–fuel ratio determines whether a mixture is ...
Lean-burn refers to the burning of fuel with an excess of air in an internal combustion engine. In lean-burn engines the air–fuel ratio may be as lean as 65:1 (by mass). The air / fuel ratio needed to stoichiometrically combust gasoline, by contrast, is 14.64:1. The excess of air in a lean-burn engine emits far less hydrocarbons.
In combustion physics, fuel mass fraction is the ratio of fuel mass flow to the total mass flow of a fuel mixture. If an air flow is fuel free, the fuel mass fraction is zero; in pure fuel without trapped gases, the ratio is unity. [1] As fuel is burned in a combustion process, the fuel mass fraction is reduced. The definition reads as = where ...
(The fuel-air ratio (FAR) is the reciprocal of the air-fuel ratio (AFR).) λ is the air-fuel equivalence ratio, and λ=1 means that it is assumed that the fuel and the oxidising agent (oxygen in air) are present in exactly the correct proportions so that they are both fully consumed in the reaction.
Gasoline engines take in a mixture of air and gasoline and compress it by the movement of the piston from bottom dead center to top dead center when the fuel is at maximum compression. The reduction in the size of the swept area of the cylinder and taking into account the volume of the combustion chamber is described by a ratio.
Gasoline engines can run at stoichiometric air-to-fuel ratio, because gasoline is quite volatile and is mixed (sprayed or carburetted) with the air prior to ignition. Diesel engines, in contrast, run lean, with more air available than simple stoichiometry would require. Diesel fuel is less volatile and is effectively burned as it is injected. [16]
Hints and the solution for today's Wordle on Tuesday, November 19.
The flow is from right to left. The fuel-air ratio is decreased. This makes the flame to change its shape, then become unstable, and eventually blow-off. Static instability [2] or flame blow-off refer to phenomena involving the interaction between the chemical composition of the fuel-oxidizer mixture and the flow environment of the flame. [13]