Search results
Results from the WOW.Com Content Network
The color temperature scale describes only the color of light emitted by a light source, which may actually be at a different (and often much lower) temperature. [1] [2] Color temperature has applications in lighting, [3] photography, [4] videography, [5] publishing, [6] manufacturing, [7] astrophysics, [8] and other fields.
Priest proposed to use "the scale of temperature as a scale for arranging the chromaticities of the several illuminants in a serial order". Over the next few years, Judd published three more significant papers: The first verified the findings of Priest, [7] Davis, [8] and Judd, [9] with a paper on sensitivity to change in color temperature. [11]
In 1761, Benjamin Franklin wrote a letter describing his experiments on the relationship between color and heat absorption. [7] He found that darker color clothes got hotter when exposed to sunlight than lighter color clothes. One experiment he performed consisted of placing square pieces of cloth of various colors out in the snow on a sunny day.
Additionally, there is a relationship between correlated color temperature and apparent brightness of a source. [15] From these findings, it is evident that color rendering index, in place of correlated color temperature, may be a more appropriate metric for determining as to whether or not a certain source is considered pleasing.
Blacksmiths work iron when it is hot enough to emit plainly visible thermal radiation. The color of a star is determined by its temperature, according to Wien's law. In the constellation of Orion, one can compare Betelgeuse (T ≈ 3800 K, upper left), Rigel (T = 12100 K, bottom right), Bellatrix (T = 22000 K, upper right), and Mintaka (T = 31800 K, rightmost of the 3 "belt stars" in the middle).
A body at temperature T radiates electromagnetic energy. A perfect black body in thermodynamic equilibrium absorbs all light that strikes it, and radiates energy according to a unique law of radiative emissive power for temperature T (Stefan–Boltzmann law), universal for all perfect black bodies. Kirchhoff's law states that:
Emissivity of a body at a given temperature is the ratio of the total emissive power of a body to the total emissive power of a perfectly black body at that temperature. Following Planck's law, the total energy radiated increases with temperature while the peak of the emission spectrum shifts to shorter wavelengths. The energy emitted at ...
Finally, the relationship between M and R is close to linear. The ratio of M to R increases by a factor of only three over 2.5 orders of magnitude of M . This relation is roughly proportional to the star's inner temperature T I , and its extremely slow increase reflects the fact that the rate of energy generation in the core strongly depends on ...