Search results
Results from the WOW.Com Content Network
In mathematics, the Euclidean distance between two points in Euclidean space is the length of the line segment between them. It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem , and therefore is occasionally called the Pythagorean distance .
The closest pair of points problem or closest pair problem is a problem of computational geometry: given points in metric space, find a pair of points with the smallest distance between them. The closest pair problem for points in the Euclidean plane [ 1 ] was among the first geometric problems that were treated at the origins of the systematic ...
The distance (or perpendicular distance) from a point to a line is the shortest distance from a fixed point to any point on a fixed infinite line in Euclidean geometry. It is the length of the line segment which joins the point to the line and is perpendicular to the line. The formula for calculating it can be derived and expressed in several ways.
In mathematics, a Euclidean distance matrix is an n×n matrix representing the spacing of a set of n points in Euclidean space. For points x 1 , x 2 , … , x n {\displaystyle x_{1},x_{2},\ldots ,x_{n}} in k -dimensional space ℝ k , the elements of their Euclidean distance matrix A are given by squares of distances between them.
In Euclidean geometry, the Euclidean distance d(a,b) between two points a and b may be used to express the collinearity between three points by: [3] [4] The points a , b and c are collinear if and only if d ( x , a ) = d ( c , a ) and d ( x , b ) = d ( c , b ) implies x = c .
The distance (more precisely the Euclidean distance) between two points of a Euclidean space is the norm of the translation vector that maps one point to the other; that is d ( P , Q ) = ‖ P Q → ‖ .
The distance between two points in physical space is the length of a straight line between them, which is the shortest possible path. This is the usual meaning of distance in classical physics, including Newtonian mechanics. Straight-line distance is formalized mathematically as the Euclidean distance in two-and three-dimensional space.
defining the distance between two points P = (p x, p y) and Q = (q x, q y) is then known as the Euclidean metric, and other metrics define non-Euclidean geometries. In terms of analytic geometry, the restriction of classical geometry to compass and straightedge constructions means a restriction to first- and second-order equations, e.g., y = 2 ...