Search results
Results from the WOW.Com Content Network
Red blood cells (RBCs), referred to as erythrocytes (from Ancient Greek erythros 'red' and kytos 'hollow vessel', with -cyte translated as 'cell' in modern usage) in academia and medical publishing, also known as red cells, [1] erythroid cells, and rarely haematids, are the most common type of blood cell and the vertebrate's principal means of delivering oxygen (O 2) to the body tissues—via ...
Hemoglobin is an iron-containing protein that gives red blood cells their color and facilitates transportation of oxygen from the lungs to tissues and carbon dioxide from tissues to the lungs to be exhaled. [3] Red blood cells are the most abundant cell in the blood, accounting for about 40–45% of its volume.
The heart is a muscular organ situated in the mediastinum.It consists of four chambers, four valves, two main arteries (the coronary arteries), and the conduction system. The left and right sides of the heart have different functions: the right side receives de-oxygenated blood through the superior and inferior venae cavae and pumps blood to the lungs through the pulmonary artery, and the left ...
4.7 to 6.1 million (male), 4.2 to 5.4 million (female) erythrocytes: [13] Red blood cells contain the blood's hemoglobin and distribute oxygen. Mature red blood cells lack a nucleus and organelles in mammals. The red blood cells (together with endothelial vessel cells and other cells) are also marked by glycoproteins that define the different ...
A feedback loop involving erythropoietin helps regulate the process of erythropoiesis so that, in non-disease states, the production of red blood cells is equal to the destruction of red blood cells and the red blood cell number is sufficient to sustain adequate tissue oxygen levels but not so high as to cause sludging, thrombosis, or stroke ...
The heart is a muscular organ found in humans and other animals. This organ pumps blood through the blood vessels. [1] Heart and blood vessels together make the circulatory system. [2] The pumped blood carries oxygen and nutrients to the tissue, while carrying metabolic waste such as carbon dioxide to the lungs. [3]
An open circulatory system is made up of a heart, vessels, and hemolymph. This diagram shows how the hemolymph is circulated throughout the body of a grasshopper. The hemolymph is first pumped through the heart, into the aorta, dispersed into the head and throughout the hemocoel, then back through the ostia that are located in the heart, where ...
Hemoglobin in normal red blood cells is protected by a reduction system to keep this from happening. Nitric oxide is capable of converting a small fraction of hemoglobin to methemoglobin in red blood cells. The latter reaction is a remnant activity of the more ancient nitric oxide dioxygenase function of globins.