enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Detrended correspondence analysis - Wikipedia

    en.wikipedia.org/wiki/Detrended_correspondence...

    For each sample along the gradient, a new species is introduced but another species is no longer present. The result is a sparse matrix. Ones indicate the presence of a species in a sample. Except at the edges each sample contains five species. Comparison of Correspondence Analysis and Detrended Correspondence Analysis on example (ideal) data.

  3. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    In practice, the sample size used in a study is usually determined based on the cost, time, or convenience of collecting the data, and the need for it to offer sufficient statistical power. In complex studies, different sample sizes may be allocated, such as in stratified surveys or experimental designs with multiple treatment groups.

  4. Neyman allocation - Wikipedia

    en.wikipedia.org/wiki/Neyman_allocation

    Neyman allocation, also known as optimum allocation, is a method of sample size allocation in stratified sampling developed by Jerzy Neyman in 1934. This technique determines the optimal sample size for each stratum to minimize the variance of the estimated population parameter for a fixed total sample size and cost.

  5. Direct coupling analysis - Wikipedia

    en.wikipedia.org/wiki/Direct_coupling_analysis

    Direct coupling analysis or DCA is an umbrella term comprising several methods for analyzing sequence data in computational biology. [1] The common idea of these methods is to use statistical modeling to quantify the strength of the direct relationship between two positions of a biological sequence , excluding effects from other positions.

  6. List of analyses of categorical data - Wikipedia

    en.wikipedia.org/wiki/List_of_analyses_of...

    This is a list of statistical procedures which can be used for the analysis of categorical data, also known as data on the nominal scale and as categorical variables. General tests [ edit ]

  7. Correspondence analysis - Wikipedia

    en.wikipedia.org/wiki/Correspondence_analysis

    Correspondence analysis (CA) is a multivariate statistical technique proposed [1] by Herman Otto Hartley (Hirschfeld) [2] and later developed by Jean-Paul Benzécri. [3] It is conceptually similar to principal component analysis, but applies to categorical rather than continuous data. In a similar manner to principal component analysis, it ...

  8. Multiple correspondence analysis - Wikipedia

    en.wikipedia.org/wiki/Multiple_correspondence...

    In statistics, multiple correspondence analysis (MCA) is a data analysis technique for nominal categorical data, used to detect and represent underlying structures in a data set. It does this by representing data as points in a low-dimensional Euclidean space .

  9. Directional component analysis - Wikipedia

    en.wikipedia.org/wiki/Directional_component_analysis

    Directional component analysis (DCA) [1] [2] [3] is a statistical method used in climate science for identifying representative patterns of variability in space-time data-sets such as historical climate observations, [1] weather prediction ensembles [2] or climate ensembles.