Search results
Results from the WOW.Com Content Network
Neyman allocation, also known as optimum allocation, is a method of sample size allocation in stratified sampling developed by Jerzy Neyman in 1934. This technique determines the optimal sample size for each stratum to minimize the variance of the estimated population parameter for a fixed total sample size and cost.
In practice, the sample size used in a study is usually determined based on the cost, time, or convenience of collecting the data, and the need for it to offer sufficient statistical power. In complex studies, different sample sizes may be allocated, such as in stratified surveys or experimental designs with multiple treatment groups.
Detrended correspondence analysis (DCA) is a multivariate statistical technique widely used by ecologists to find the main factors or gradients in large, species-rich but usually sparse data matrices that typify ecological community data. DCA is frequently used to suppress artifacts inherent in most other multivariate analyses when applied to ...
Proportionate allocation uses a sampling fraction in each of the strata that are proportional to that of the total population. For instance, if the population consists of n total individuals, m of which are male and f female (and where m + f = n), then the relative size of the two samples (x 1 = m/n males, x 2 = f/n females) should reflect this proportion.
Direct coupling analysis or DCA is an umbrella term comprising several methods for analyzing sequence data in computational biology. [1] The common idea of these methods is to use statistical modeling to quantify the strength of the direct relationship between two positions of a biological sequence , excluding effects from other positions.
The value 3.267 is taken from the sample size-specific D 4 anti-biasing constant for n=2, as given in most textbooks on statistical process control (see, for example, Montgomery [2]: 725 ). Calculation of individuals control limits
Matched or independent study designs may be used. Power, sample size, and the detectable alternative hypothesis are interrelated. The user specifies any two of these three quantities and the program derives the third. A description of each calculation, written in English, is generated and may be copied into the user's documents.
Some sampling designs that could introduce generally greater than 1 include: cluster sampling (such as when there is correlation between observations), stratified sampling (with disproportionate allocation to the strata sizes), cluster randomized controlled trial, disproportional (unequal probability) sample (e.g. Poisson sampling), statistical ...