enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lehmer code - Wikipedia

    en.wikipedia.org/wiki/Lehmer_code

    The usual way to prove that there are n! different permutations of n objects is to observe that the first object can be chosen in n different ways, the next object in n − 1 different ways (because choosing the same number as the first is forbidden), the next in n − 2 different ways (because there are now 2 forbidden values), and so forth.

  3. Random permutation statistics - Wikipedia

    en.wikipedia.org/wiki/Random_permutation_statistics

    The types of permutations presented in the preceding two sections, i.e. permutations containing an even number of even cycles and permutations that are squares, are examples of so-called odd cycle invariants, studied by Sung and Zhang (see external links). The term odd cycle invariant simply means that membership in the respective combinatorial ...

  4. Permutation - Wikipedia

    en.wikipedia.org/wiki/Permutation

    It contains the first use of permutations and combinations, to list all possible Arabic words with and without vowels. [5] The rule to determine the number of permutations of n objects was known in Indian culture around 1150 AD.

  5. Twelvefold way - Wikipedia

    en.wikipedia.org/wiki/Twelvefold_way

    Think of a set of X numbered items (numbered from 1 to x), from which we choose n, yielding an ordered list of the items: e.g. if there are = items of which we choose =, the result might be the list (5, 2, 10). We then count how many different such lists exist, sometimes first transforming the lists in ways that reduce the number of distinct ...

  6. Random permutation - Wikipedia

    en.wikipedia.org/wiki/Random_permutation

    A simple algorithm to generate a permutation of n items uniformly at random without retries, known as the Fisher–Yates shuffle, is to start with any permutation (for example, the identity permutation), and then go through the positions 0 through n − 2 (we use a convention where the first element has index 0, and the last element has index n − 1), and for each position i swap the element ...

  7. Steinhaus–Johnson–Trotter algorithm - Wikipedia

    en.wikipedia.org/wiki/Steinhaus–Johnson...

    The ! permutations of the numbers from 1 to may be placed in one-to-one correspondence with the ! numbers from 0 to ! by pairing each permutation with the sequence of numbers that count the number of positions in the permutation that are to the right of value and that contain a value less than (that is, the number of inversions for which is the ...

  8. Cycles and fixed points - Wikipedia

    en.wikipedia.org/wiki/Cycles_and_fixed_points

    (1) There is only one way to construct a permutation of k elements with k cycles: Every cycle must have length 1 so every element must be a fixed point. (2.a) Every cycle of length k may be written as permutation of the number 1 to k; there are k! of these permutations.

  9. Rencontres numbers - Wikipedia

    en.wikipedia.org/wiki/Rencontres_numbers

    For n ≥ 0 and 0 ≤ k ≤ n, the rencontres number D n, k is the number of permutations of { 1, ..., n } that have exactly k fixed points. For example, if seven presents are given to seven different people, but only two are destined to get the right present, there are D 7, 2 = 924 ways this could happen.