Search results
Results from the WOW.Com Content Network
The travelling purchaser problem, the vehicle routing problem and the ring star problem [1] are three generalizations of TSP. The decision version of the TSP (where given a length L, the task is to decide whether the graph has a tour whose length is at most L) belongs to the class of NP-complete problems.
In an asymmetric bottleneck TSP, there are cases where the weight from node A to B is different from the weight from B to A (e. g. travel time between two cities with a traffic jam in one direction). The Euclidean bottleneck TSP, or planar bottleneck TSP, is the bottleneck TSP with the distance being the ordinary Euclidean distance. The problem ...
The Concorde TSP Solver is a program for solving the travelling salesman problem. It was written by David Applegate , Robert E. Bixby , Vašek Chvátal , and William J. Cook , in ANSI C , and is freely available for academic use.
Moreover, for each number of cities there is an assignment of distances between the cities for which the nearest neighbour heuristic produces the unique worst possible tour. (If the algorithm is applied on every vertex as the starting vertex, the best path found will be better than at least N/2-1 other tours, where N is the number of vertices.) [1]
2-opt. In optimization, 2-opt is a simple local search algorithm for solving the traveling salesman problem.The 2-opt algorithm was first proposed by Croes in 1958, [1] although the basic move had already been suggested by Flood. [2]
In combinatorial optimization, the set TSP, also known as the generalized TSP, group TSP, One-of-a-Set TSP, Multiple Choice TSP or Covering Salesman Problem, is a generalization of the traveling salesman problem (TSP), whereby it is required to find a shortest tour in a graph which visits all specified subsets of the vertices of a graph.
There are many methods to solve vehicle routing problems manually. For example, optimum routing is a big efficiency issue for forklifts in large warehouses. Some of the manual methods to decide upon the most efficient route are: Largest gap, S-shape, Aisle-by-aisle, Combined and Combined +.
The Steiner traveling salesman problem (Steiner TSP, or STSP) is an extension of the traveling salesman problem. Given a list of cities, some of which are required, and the lengths of the roads between them, the goal is to find the shortest possible walk that visits each required city and then returns to the origin city. [ 1 ]