Search results
Results from the WOW.Com Content Network
A formal power series can be loosely thought of as an object that is like a polynomial, but with infinitely many terms.Alternatively, for those familiar with power series (or Taylor series), one may think of a formal power series as a power series in which we ignore questions of convergence by not assuming that the variable X denotes any numerical value (not even an unknown value).
The partial sums of a power series are polynomials, the partial sums of the Taylor series of an analytic function are a sequence of converging polynomial approximations to the function at the center, and a converging power series can be seen as a kind of generalized polynomial with infinitely many terms. Conversely, every polynomial is a power ...
In a notable study of power conducted by social psychologists John R. P. French and Bertram Raven in 1959, power is divided into five separate and distinct forms. [1] [2] They identified those five bases of power as coercive, reward, legitimate, referent, and expert.
Unlike an ordinary series, the formal power series is not required to converge: in fact, the generating function is not actually regarded as a function, and the "variable" remains an indeterminate. One can generalize to formal power series in more than one indeterminate, to encode information about infinite multi-dimensional arrays of numbers.
Furthermore, every polynomial is its own Maclaurin series. The exponential function is analytic. Any Taylor series for this function converges not only for x close enough to x 0 (as in the definition) but for all values of x (real or complex). The trigonometric functions, logarithm, and the power functions are analytic on any open set of their ...
The additive formal group law F(x,y) = x + y has height ∞, as its pth power map is 0. The multiplicative formal group law F(x,y) = x + y + xy has height 1, as its pth power map is (1 + x) p − 1 = x p. The formal group law of an elliptic curve has height 1 if the curve is ordinary and height 2 if the curve is supersingular.
In mathematics and computer science, a rational series is a generalisation of the concept of formal power series over a ring to the case when the basic algebraic structure is no longer a ring but a semiring, and the indeterminates adjoined are not assumed to commute.
Quotient rings of the ring are used in the study of a formal algebraic space as well as rigid analysis, the latter over non-archimedean complete fields. Over a discrete topological ring, the ring of restricted power series coincides with a polynomial ring; thus, in this sense, the notion of "restricted power series" is a generalization of a ...