Search results
Results from the WOW.Com Content Network
A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem , there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes .
For example, among the numbers 1 through 6, the numbers 2, 3, and 5 are the prime numbers, [6] as there are no other numbers that divide them evenly (without a remainder). 1 is not prime, as it is specifically excluded in the definition. 4 = 2 × 2 and 6 = 2 × 3 are both composite.
Continuing this process until every factor is prime is called prime factorization; the result is always unique up to the order of the factors by the prime factorization theorem. To factorize a small integer n using mental or pen-and-paper arithmetic, the simplest method is trial division : checking if the number is divisible by prime numbers 2 ...
In mathematics, the fundamental theorem of arithmetic, also called the unique factorization theorem and prime factorization theorem, states that every integer greater than 1 can be represented uniquely as a product of prime numbers, up to the order of the factors. [3] [4] [5] For example,
Theorem: Factor N − 1 as N − 1 = AB, where A and B are relatively prime, >, the prime factorization of A is known, but the factorization of B is not necessarily known. If for each prime factor p of A there exists an integer a p {\displaystyle a_{p}} so that
The tables contain the prime factorization of the natural numbers from 1 to 1000. When n is a prime number, the prime factorization is just n itself, written in bold below. The number 1 is called a unit. It has no prime factors and is neither prime nor composite.
The series of reciprocals of all prime divisors of Fermat numbers is convergent. (Křížek, Luca & Somer 2002) If n n + 1 is prime and , there exists an integer m such that n = 2 2 m. The equation n n + 1 = F (2 m +m) holds in that case. [13] [14] Let the largest prime factor of the Fermat number F n be P(F n). Then,
The next odd divisor to be tested is 7. One has 77 = 7 · 11, and thus n = 2 · 3 2 · 7 · 11. This shows that 7 is prime (easy to test directly). Continue with 11, and 7 as a first divisor candidate. As 7 2 > 11, one has finished. Thus 11 is prime, and the prime factorization is; 1386 = 2 · 3 2 · 7 · 11.