Search results
Results from the WOW.Com Content Network
At 20 °C and 101.325 kPa, dry air has a density of 1.2041 kg/m 3. At 70 °F and 14.696 psi, dry air has a density of 0.074887 lb/ft 3. The following table illustrates the air density–temperature relationship at 1 atm or 101.325 kPa: [citation needed]
The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...
Standard sea-level conditions (SSL), [1] also known as sea-level standard (SLS), defines a set of atmospheric conditions for physical calculations.The term "standard sea level" is used to indicate that values of properties are to be taken to be the same as those standard at sea level, and is done to define values for use in general calculations.
Ratings found in centrifugal fan performance tables and curves are based on standard cubic feet per minute (SCFM). Fan manufacturers define standard air as clean, dry air with a density of 0.075 pounds mass per cubic foot, with the atmospheric pressure at sea level of 29.92 inches of mercury and a temperature of 70°F.
In that case, the specific volume would equal 0.4672 in 3 /lb. However, if the temperature is changed to 1160 °R, the specific volume of the super heated steam would have changed to 0.2765 in 3 /lb, which is a 59% overall change. Knowing the specific volumes of two or more substances allows one to find useful information for certain applications.
where c p is the specific heat capacity for a constant pressure and c v is the specific heat capacity for a constant volume. [9] It is common, especially in engineering applications, to represent the specific gas constant by the symbol R. In such cases, the universal gas constant is usually given a different symbol such as R to distinguish it ...
= molar mass of Earth's air: 0.0289644 kg/mol The value of subscript b ranges from 0 to 6 in accordance with each of seven successive layers of the atmosphere shown in the table below. The reference value for ρ b for b = 0 is the defined sea level value, ρ 0 = 1.2250 kg/m 3 or 0.0023768908 slug/ft 3 .
Atmospheric pollutant concentrations expressed as mass per unit volume of atmospheric air (e.g., mg/m 3, μg/m 3, etc.) at sea level will decrease with increasing altitude because the atmospheric pressure decreases with increasing altitude. The change of atmospheric pressure with altitude can be obtained from this equation: [2]