Search results
Results from the WOW.Com Content Network
The complement graph of a complete graph is an empty graph. If the edges of a complete graph are each given an orientation, the resulting directed graph is called a tournament. K n can be decomposed into n trees T i such that T i has i vertices. [6] Ringel's conjecture asks if the complete graph K 2n+1 can be decomposed into copies of any tree ...
A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).
A complete bipartite graph K m,n has a maximum matching of size min{m,n}. A complete bipartite graph K n,n has a proper n-edge-coloring corresponding to a Latin square. [14] Every complete bipartite graph is a modular graph: every triple of vertices has a median that belongs to shortest paths between each pair of vertices. [15]
Discrete mathematics is the study of mathematical structures that can be considered "discrete" (in a way analogous to discrete variables, having a bijection with the set of natural numbers) rather than "continuous" (analogously to continuous functions).
A simplex graph is an undirected graph κ(G) with a vertex for every clique in a graph G and an edge connecting two cliques that differ by a single vertex. It is an example of median graph , and is associated with a median algebra on the cliques of a graph: the median m ( A , B , C ) of three cliques A , B , and C is the clique whose vertices ...
When modelling relations between two different classes of objects, bipartite graphs very often arise naturally. For instance, a graph of football players and clubs, with an edge between a player and a club if the player has played for that club, is a natural example of an affiliation network, a type of bipartite graph used in social network analysis.
NP-complete special cases include the edge dominating set problem, i.e., the dominating set problem in line graphs. NP-complete variants include the connected dominating set problem and the maximum leaf spanning tree problem. [3]: ND2 Feedback vertex set [2] [3]: GT7 Feedback arc set [2] [3]: GT8 Graph coloring [2] [3]: GT4
Rédei's theorem is the special case for complete graphs of the Gallai–Hasse–Roy–Vitaver theorem, relating the lengths of paths in orientations of graphs to the chromatic number of these graphs. [6] Another basic result on tournaments is that every strongly connected tournament has a Hamiltonian cycle. [7]