Search results
Results from the WOW.Com Content Network
In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.
The elementary power rule generalizes considerably. The most general power rule is the functional power rule: for any functions f and g, ′ = () ′ = (′ + ′ ), ...
The Taylor polynomial of degree d is the polynomial of degree d which best approximates f, and its coefficients can be found by a generalization of the above formulas. Taylor's theorem gives a precise bound on how good the approximation is. If f is a polynomial of degree less than or equal to d, then the Taylor polynomial of degree d equals f.
In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let () = (), where both f and g are differentiable and ()
Symbolab is an answer engine [1] that provides step-by-step solutions to mathematical problems in a range of subjects. [2] It was originally developed by Israeli start-up company EqsQuest Ltd., under whom it was released for public use in 2011. In 2020, the company was acquired by American educational technology website Course Hero. [3] [4]
The next step is to multiply the above value by the step size , which we take equal to one here: h ⋅ f ( y 0 ) = 1 ⋅ 1 = 1. {\displaystyle h\cdot f(y_{0})=1\cdot 1=1.} Since the step size is the change in t {\displaystyle t} , when we multiply the step size and the slope of the tangent, we get a change in y {\displaystyle y} value.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In calculus, the power rule is used to differentiate functions of the form () =, whenever is a real number.Since differentiation is a linear operation on the space of differentiable functions, polynomials can also be differentiated using this rule.