Search results
Results from the WOW.Com Content Network
In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval [0, 1] or (0, 1) in terms of two positive parameters, denoted by alpha (α) and beta (β), that appear as exponents of the variable and its complement to 1, respectively, and control the shape of the distribution.
The Beta distribution on [0,1], a family of two-parameter distributions with one mode, of which the uniform distribution is a special case, and which is useful in estimating success probabilities. The four-parameter Beta distribution, a straight-forward generalization of the Beta distribution to arbitrary bounded intervals [,].
The beta family includes the beta of the first and second kind [7] (B1 and B2, where the B2 is also referred to as the Beta prime), which correspond to c = 0 and c = 1, respectively. Setting =, = yields the standard two-parameter beta distribution.
It is a transformation of the four-parameter beta distribution with an additional assumption that its expected value is μ = a + 4 b + c 6 . {\displaystyle \mu ={\frac {a+4b+c}{6}}.} The mean of the distribution is therefore defined as the weighted average of the minimum, most likely and maximum values that the variable may take, with four ...
A Weibull distribution with shape parameter k = 1 and rate parameter β is an exponential distribution with rate parameter β. A beta distribution with shape parameters α = β = 1 is a continuous uniform distribution over the real numbers 0 to 1. A beta-binomial distribution with parameter n and shape parameters α = β = 1 is a discrete ...
This particular distribution is known as the flat Dirichlet distribution. Values of the concentration parameter above 1 prefer variates that are dense, evenly distributed distributions, i.e. all the values within a single sample are similar to each other. Values of the concentration parameter below 1 prefer sparse distributions, i.e. most of ...
The Type I cumulative distribution function is usually represented as a Poisson mixture of central beta random variables: [1] = = (+,),where λ is the noncentrality parameter, P(.) is the Poisson(λ/2) probability mass function, \alpha=m/2 and \beta=n/2 are shape parameters, and (,) is the incomplete beta function.
What is now known as the beta distribution had been used by Thomas Bayes as a posterior distribution of the parameter of a Bernoulli distribution in his 1763 work on inverse probability. The Beta distribution gained prominence due to its membership in Pearson's system and was known until the 1940s as the Pearson type I distribution. [1 ...