Search results
Results from the WOW.Com Content Network
In atomic physics, the Bohr model or Rutherford–Bohr model was the first successful model of the atom. Developed from 1911 to 1918 by Niels Bohr and building on Ernest Rutherford 's nuclear model , it supplanted the plum pudding model of J J Thomson only to be replaced by the quantum atomic model in the 1920s.
The main and final accomplishments of the old quantum theory were the determination of the modern form of the periodic table by Edmund Stoner and the Pauli exclusion principle, both of which were premised on Arnold Sommerfeld's enhancements to the Bohr model of the atom. [5] [6]
This is an accepted version of this page This is the latest accepted revision, reviewed on 17 November 2024. Development of the table of chemical elements The American chemist Glenn T. Seaborg —after whom the element seaborgium is named—standing in front of a periodic table, May 19, 1950 Part of a series on the Periodic table Periodic table forms 18-column 32-column Alternative and ...
Bohr developed the Bohr model of the atom, in which he proposed that energy levels of electrons are discrete and that the electrons revolve in stable orbits around the atomic nucleus but can jump from one energy level (or orbit) to another. Although the Bohr model has been supplanted by other models, its underlying principles remain valid.
In a trilogy of papers Bohr described and applied his model to derive the Balmer series of lines in the atomic spectrum of hydrogen and the related spectrum of He +. [38]: 197 He also used he model to describe the structure of the periodic table and aspects of chemical bonding. Together these results lead to Bohr's model being widely accepted ...
Niels Bohr's 1913 quantum model of the hydrogen atom. In 1913 Niels Bohr proposed a new model of the atom that included quantized electron orbits: electrons still orbit the nucleus much as planets orbit around the Sun, but they are permitted to inhabit only certain orbits, not to orbit at any arbitrary distance. [18]
The principal quantum number was first created for use in the semiclassical Bohr model of the atom, distinguishing between different energy levels. With the development of modern quantum mechanics, the simple Bohr model was replaced with a more complex theory of atomic orbitals. However, the modern theory still requires the principal quantum ...
However, it should be understood that the elementary particles are quantum states of the standard model of particle physics, and hence the quantum numbers of these particles bear the same relation to the Hamiltonian of this model as the quantum numbers of the Bohr atom does to its Hamiltonian. In other words, each quantum number denotes a ...