Search results
Results from the WOW.Com Content Network
ca. 1100 – Omar Khayyám "gave a complete classification of cubic equations with geometric solutions found by means of intersecting conic sections." He became the first to find general geometric solutions of cubic equations and laid the foundations for the development of analytic geometry and non-Euclidean geometry.
In modern times, geometric concepts have been generalized to a high level of abstraction and complexity, and have been subjected to the methods of calculus and abstract algebra, so that many modern branches of the field are barely recognizable as the descendants of early geometry. (See Areas of mathematics and Algebraic geometry.)
For the most part, straightedge and compass constructions dominated ancient Greek mathematics and most theorems and results were stated and proved in terms of geometry. These proofs involved a straightedge (such as that formed by a taut rope), which was used to construct lines, and a compass, which was used to construct circles.
Yuri Manin (1937–2023) – algebraic geometry and diophantine geometry; Vladimir Arnold (1937–2010) – algebraic geometry; Ernest Vinberg (1937–2020) J. H. Conway (1937–2020) – sphere packing, recreational geometry; Robin Hartshorne (1938–) – geometry, algebraic geometry; Phillip Griffiths (1938–) – algebraic geometry ...
All of these texts mention the so-called Pythagorean triples, so, by inference, the Pythagorean theorem seems to be the most ancient and widespread mathematical development after basic arithmetic and geometry. The study of mathematics as a "demonstrative discipline" began in the 6th century BC with the Pythagoreans, who coined the term ...
This is a timeline of pure and applied mathematics history.It is divided here into three stages, corresponding to stages in the development of mathematical notation: a "rhetorical" stage in which calculations are described purely by words, a "syncopated" stage in which quantities and common algebraic operations are beginning to be represented by symbolic abbreviations, and finally a "symbolic ...
Geometry (from Ancient Greek γεωμετρία (geōmetría) 'land measurement'; from γῆ (gê) 'earth, land' and μέτρον (métron) 'a measure') [1] is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. [2]
As a result of obvious linguistic and geographic barriers, as well as content, Chinese mathematics and that of the mathematics of the ancient Mediterranean world are presumed to have developed more or less independently up to the time when The Nine Chapters on the Mathematical Art reached its final form, while the Book on Numbers and ...