Search results
Results from the WOW.Com Content Network
In mathematics, equality is a relationship between two quantities or expressions, stating that they have the same value, or represent the same mathematical object. [1] Equality between A and B is written A = B, and pronounced "A equals B". In this equality, A and B are distinguished by calling them left-hand side (LHS), and right-hand side (RHS).
A symmetric relation is a type of binary relation. Formally, a binary relation R over a set X is symmetric if: [1], (), where the notation aRb means that (a, b) ∈ R. An example is the relation "is equal to", because if a = b is true then b = a is also true.
[1] [2] A similar property exists for binary relations; a binary relation is said to be symmetric if the relation applies regardless of the order of its operands; for example, equality is symmetric as two equal mathematical objects are equal regardless of their order. [3]
Symmetric and transitive: The relation R on N, defined as aRb ↔ ab ≠ 0. Or any partial equivalence relation; Reflexive and symmetric: The relation R on Z, defined as aRb ↔ "a − b is divisible by at least one of 2 or 3." Or any dependency relation. Properties definable in first-order logic that an equivalence relation may or may not ...
By the definition of matrix equality, which requires that the entries in all corresponding positions be equal, equal matrices must have the same dimensions (as matrices of different sizes or shapes cannot be equal). Consequently, only square matrices can be symmetric. The entries of a symmetric matrix are symmetric with respect to the main ...
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
The set of operations that preserve a given property of the object form a group. In general, every kind of structure in mathematics will have its own kind of symmetry. Examples include even and odd functions in calculus, symmetric groups in abstract algebra, symmetric matrices in linear algebra, and Galois groups in Galois theory.
For example, "1 < 3", "1 is less than 3", and "(1,3) ∈ R less" mean all the same; some authors also write "(1,3) ∈ (<)". Various properties of relations are investigated. A relation R is reflexive if xRx holds for all x, and irreflexive if xRx holds for no x. It is symmetric if xRy always implies yRx, and asymmetric if xRy implies that yRx ...